No Arabic abstract
Results of simultaneous INTEGRAL and optical observations of galactic microquasar SS433 in May 2003 and INTEGRAL/RXTE observations in March 2004 are presented. Persistent precessional variability with a maximum to minimum uneclipsed hard X-ray flux ratio of sim 4 is discovered. The 18-60 keV X-ray eclipse is found to be in phase with optical and near infrared eclipses. The orbital eclipse observed by INTEGRAL in May 2003 is at least two times deeper and apparently wider than in soft X-ray band. The broadband X-ray spectrum 2-100 keV simultaneously detected by RXTE/INTEGRAL in March 2004 can be described by bremsstrahlung emission from optically thin thermal plasma with kTsim 30 keV. The optical spectroscopy with the 6-m SAO BTA telescope confirmed the optical companion to be an A5-A7 supergiant. For the first time, spectorscopic indications of a strong heating effect in the optical star atmosphere are found. The measurements of absorption lines which are presumably formed in the non-illuminated side of the supergiant yield its radial velocity semi-amplitude K_v=132pm 9 km/s. The analysis of the observed hard X-ray light curve and the eclipse duration, combined with spectroscopically found optical star radial velocity corrected for the strong heating effect, allows us to model SS433 as a massive X-ray binary. Assuming that the hard X-ray source in SS433 is eclipsed by the donor star that exactly fills its Roche lobe, the masses of the optical and compact components in SS433 are suggested to be M_vapprox 30 M_odot and M_xapprox 9M_odot, respectively. This provides further evidence that SS433 is a massive binary system with supercritical accretion onto a black hole.
Results of simultaneous {it INTEGRAL} and optical observations of galactic microquasar SS433 in May 2003 are presented. The analysis of the X-ray and optical eclipse duration and hard X-ray spectra obtained by {it INTEGRAL} together with optical spectroscopy obtained on the 6-m telescope allows us to construct a model of SS433 as a massive X-ray binary. X-ray eclipse in hard X-rays has a depth of $sim 80%$ and extended wings. The optical spectroscopy allows us to identify the optical companion as a A5-A7 supergiant and to measure its radial velocity semi-amplitude $K_v=132$ km/s. A strong heating effect in the optical star atmosphere is discovered spectroscopically. The observed broadband X-ray spectrum 2-100 keV can be described by emission from optically thin thermal plasma with $kTsim 15-20 keV$
We conducted multi wavelength campaign on SS433 in Sept. 2002 using X-ray, B, Infra-Red and radio telescopes. We observed variabilities on a time-scale of few minutes in all the wavelengths. We interpret them to be due to bullet-like features from the accretion disk. We also present X-ray properties as obtained by RXTE.
We report the results of a multi-wavelength campaign on the blazar Mrk 421 during outburst. We observed four strong flares at X-ray energies that were not seen at other wavelengths (partially because of missing data). From the fastest rise in the X-rays, an upper limit could be derived on the extension of the emission region. A time lag between high-energy and low-energy X-rays was observed, which allowed an estimation of the magnetic-field strength. The spectral analysis of the X-rays revealed a slight spectral hardening of the low-energy (3 - 43 keV) spectral index. The hardness-ratio analysis of the Swift-XRT (0.2 - 10 keV) data indicated a small correlation with the intensity; i. e., a hard-to-soft evolution was observed. At the energies of IBIS/ISGRI (20 - 150 keV), such correlations are less obvious. A multiwavelength spectrum was composed and the X-ray and bolometric luminosities are calculated.
Based on multiyear INTEGRAL observations of SS433 in 2003-2011, a composite IBIS/ISGRI 18-60 keV orbital light curve is constructed around zero precessional phases psi_{pr}= 0 at the maximim accretion disk opening angle. It shows a peculiar shape with significant excess near the orbital phase phi_orb= 0.25, which is not seen in the softer 2-10 keV energy band. The 40-60 keV orbital light curve demonstrates two almost equal humps at phases sim 0.25 and sim 0.75, most likely due to nutation effects of the accretion disk. The nutational variability of SS433 in 15-50 keV with a period of 6.290 days is independently found from timing analysis of Swift/BAT data. The change of the off-eclipse 18-60 keV X-ray flux with the precessional phase shows a double-wave form with strong primary maximum at psi_{pr}= 0 and weak but significant secondary maximum at psi_{pr}= 0.6. A weak variability of the 18-60 keV flux in the middle of the orbital eclipse correlated with the disk precessional phase is also observed. The joint analysis of the broadband 18-60 keV orbital and precessional light curves confirms the presence of a hot extended corona in the central parts of the supercritical accretion disk and constrains the binary mass ratio in SS433 in the range 0.5>q>0.3, suggesting the black hole nature of the compact object.
We report on recent near-infrared (NIR) and X-ray observations of Sagittarius A* (Sgr A*), the electromagnetic manifestation of the ~4x10^6 solar masses super-massive black hole (SMBH) at the Galactic Center. The goal of these coordinated multi-wavelength observations is to investigate the variable emission from Sgr A* in order to obtain a better understanding of the underlying physical processes in the accretion flow/outflow. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescope (July 2005, May 2007) and the ACIS-I instrument aboard the Chandra X-ray Observatory (July 2005). We report on a polarized NIR flare synchronous to a 8x1033 erg/s X-ray flare in July 2005, and a further flare in May 2007 that shows the highest sub-flare to flare contrast observed until now. The observations can be interpreted in the framework of a model involving a temporary disk with a short jet. In the disk component flux density variations can be explained due to hot spots on relativistic orbits around the central SMBH. The variations of the sub-structures of the May 2007 flare are interpreted as a variation of the hot spot structure due to differential rotation within the disk.