Do you want to publish a course? Click here

Disk-averaged Spectra & light-curves of Earth

104   0   0.0 ( 0 )
 Added by Giovanna Tinetti
 Publication date 2005
  fields Physics
and research's language is English
 Authors G. Tinetti




Ask ChatGPT about the research

We are using computer models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of biosignatures, in the globally averaged spectra and light-curves of the Earth. Using AIRS (Atmospheric Infrared Sounder) data, as input for atmospheric and surface properties, we have generated spatially resolved high-resolution synthetic spectra using the SMART radiative transfer model, for a variety of conditions, from the UV to the far-IR (beyond the range of current Earth-based satellite data). We have then averaged over the visible disk for a number of different viewing geometries to quantify the sensitivity to surface types and atmospheric features as a function of viewing geometry, and spatial and spectral resolution. These results have been processed with an instrument simulator to improve our understanding of the detectable characteristics of Earth-like planets as viewed by the first generation extrasolar terrestrial planet detection and characterization missions (Terrestrial Planet Finder/Darwin and Life finder). The wavelength range of our results are modelled over are applicable to both the proposed visible coronograph and mid-infrared interferometer TPF architectures. We have validated this model against disk-averaged observations by the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). This model was also used to analyze Earth-shine data for detectability of planetary characteristics and biosignatures in disk-averaged spectra.



rate research

Read More

The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planets surface and atmospheric properties from disk-averaged spectra as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPF-C) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model which uses observational data as input to generate a database of spatially-resolved synthetic spectra for a range of illumination conditions (phase angles) and viewing geometries. Results presented here include disk averaged synthetic spectra, light-curves and the spectral variability at visible + mid-IR wavelengths for Mars as a function of viewing angle, illumination, season. We also considered the appearance of an increasingly frozen Mars and simulated its detection versus real Mars with TPF-C and TPF-I as a function of spectral resolving power, signal-to-noise, integration time.
83 - Slim Hamdani 2006
We analyse the detectability of vegetation on a global scale on Earths surface. Considering its specific reflectance spectrum showing a sharp edge around 700 nm, vegetation can be considered as a potential global biomarker. This work, based on observational data, aims to characterise and to quantify this signature in the disk-averaged Earths spectrum. Earthshine spectra have been used to test the detectability of the Vegetation Red Edge (VRE) in the Earth spectrum. We obtained reflectance spectra from near UV (320 nm) to near IR (1020 nm) for different Earth phases (continents or oceans seen from the Moon) with EMMI on the NTT at ESO/La Silla, Chile. We accurately correct the sky background and take into account the phase-dependent colour of the Moon. VRE measurements require a correction of the ozone Chappuis absorption band and Rayleigh plus aerosol scattering. Results : The near-UV spectrum shows a dark Earth below 350 nm due to the ozone absorption. The Vegetation Red Edge is observed when forests are present (4.0% for Africa and Europe), and is lower when clouds and oceans are mainly visible (1.3% for the Pacific Ocean). Errors are typically $pm0.5$, and $pm1.5$ in the worst case. We discuss the different sources of errors and bias and suggest possible improvements. We showed that measuring the VRE or an analog on an Earth-like planet remains very difficult (photometric relative accuracy of 1% or better). It remains a small feature compared to atmospheric absorption lines. A direct monitoring from space of the global (disk-averaged) Earths spectrum would provide the best VRE follow-up.
The increasing number of transiting exoplanets sparked a significant interest in discovering their moons. Most of the methods in the literature utilize timing analysis of the raw light curves. Here we propose a new approach for the direct detection of a moon in the transit light curves via the so called Scatter Peak. The essence of the method is the valuation of the local scatter in the folded light curves of many transits. We test the ability of this method with different simulations: Kepler short cadence, Kepler long cadence, ground-based millimagnitude photometry with 3-min cadence, and the expected data quality of the planned ESA mission of PLATO. The method requires ~100 transit observations, therefore applicable for moons of 10-20 day period planets, assuming 3-4-5 year long observing campaigns with space observatories. The success rate for finding a 1 R_Earth moon around a 1 R_Jupiter exoplanet turned out to be quite promising even for the simulated ground-based observations, while the detection limit of the expected PLATO data is around 0.4 R_Earth. We give practical suggestions for observations and data reduction to improve the chance of such a detection: (i) transit observations must include out-of-transit phases before and after a transit, spanning at least the same duration as the transit itself; (ii) any trend filtering must be done in such a way that the preceding and following out-of-transit phases remain unaffected.
We have investigated mid-infrared spectra of Earth obtained by the Atmospheric Infrared Sounder (AIRS) instrument on-board the AQUA spacecraft to explore the characteristics that may someday be observed in extrasolar terrestrial planets. We have used the AIRS infrared (R ~ 1200; 3.75-15.4 microns) spectra to construct directly-observed high-resolution spectra of the only known life bearing planet, Earth. The AIRS spectra are the first such spectra that span the seasons. We investigate the rotational and seasonal spectral variations that would arise due to varying cloud amount and viewing geometry and we explore what signatures may be observable in the mid-infrared by the next generation of telescopes capable of observing extrasolar terrestrial planets.
Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae, they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these failed supernovae: supernovae with considerable fallback, accretion induced collapse of white dwarfs, and energetic helium flashes (also known as type .Ia supernovae).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا