A dichotomy in the orientation of dust and radio jets in nearby low-power radio galaxies


Abstract in English

We examine the properties of central dust in nearby quiescent and active early-type galaxies. The active galaxies are low-power radio galaxies with Fanaroff & Riley Type I or I/II radio jets. We focus on the comparison of the dust distributions in the active and quiescent galaxy samples and the relation between the radio jet and dust orientations. Our main observational conclusions are: (a) radio galaxies contain a higher fraction of regular dust ellipses compared to quiescent galaxies which contain more often irregular dust distributions; (b) the morphology, size and orientation of dust ellipses and lanes in quiescent early-types and active early-types with kpc-scale radio jets is very similar; (c) dust ellipses are aligned with the major axis of the galaxy, dust lanes do not show a preferred alignment except for large (>kpc) dust lanes which are aligned with the minor axis of the galaxy. Dust morphologies can be classified as regular ellipses and filamentary lanes. We show that the dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped dust structures, which may be in the process of settling down to become regular disks or are being perturbed by a non-gravitational force. We use the observed dust-jet orientations to constrain the three-dimensional angle $theta_{rm DJ}$ between jet and dust. For dust-lane galaxies, the jet is approximately perpendicular to the dust structure, while for dust-ellipse galaxies there is a much wider distribution of $theta_{rm DJ}$. We discuss two scenarios that could explain the dust/jet/galaxy orientation dichotomy. (abridged)

Download