Do you want to publish a course? Click here

The prestellar and protostellar population of R Coronae Australis

141   0   0.0 ( 0 )
 Added by David Nutter
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 450 and 850 um maps of R Coronae Australis. We compare the maps to previous surveys of the region, and shed new light on the previously unknown nature of the protostellar sources at the centre of the cloud. We clarify the nature of two millimetre sources previously discovered in lower resolution data. We identify one new Class 0 protostar that we label SMM 1B, and we measure the envelope masses of a number of more evolved protostars. We identify two new prestellar cores that we call SMM 1A and SMM 6.



rate research

Read More

The R CrA region was observed in the 3.5 and 6.2 cm continuum with high angular resolutions (0.6--1.7 arcseconds) using the Very Large Array. Archival data sets were also analyzed for comparison, which provided angular resolutions up to 0.3 arcseconds. A cluster of young stellar objects was detected, and a rich array of star forming activities was revealed. IRS 7A showed an enhanced outflow activity recently. The main peak of IRS 7A positionally coincides with an X-ray source, which suggests that the X-ray emission is directly related to the central protostar. The Class 0 source SMA 2 is associated with a double radio source, B 9a and 9b, and seems to be driving two outflows. The B 9 complex is probably a multiple-protostar system. Both B 9a and 9b are nonthermal radio sources with negative spectral indices. IRS 7B is a compact radio source surrounded by an extended structure. The compact source corresponds to the Class 0/I source SMA 1, and it is also closely associated with an X-ray source, suggesting that magnetic activities start early in the protostellar stage of evolution. The extended structure of IRS 7B may be a bipolar outflow. IRS 5 was resolved into two sources with a separation of 0.9 arcseconds. Both IRS 5a and 5b display radio flares and X-ray emission, suggesting that energetic magnetic processes are active in both members. The month-scale active phase of IRS 5b implies that the flare activity must involve large-scale magnetic fields. During the strong flare event of IRS 5b in 1998, IRS 5a also showed an enhanced level of radio emission. This concurrent activity suggests that IRS 5 may be an interacting young binary system, but the interaction mechanism is unknown. Alternatively, what was seen in the radio images could be a circumbinary halo.
Circularly polarized 3.5 cm continuum emission was detected toward three radio sources in the R CrA region using the Very Large Array. The Class I protostar IRS 5b persistently showed polarized radio emission with a constant helicity over 8 yr, which suggests that its magnetosphere has a stable configuration. There is a good correlation between the Stokes I and Stokes V fluxes, and the fractional polarization is about 0.17. During active phases the fractional polarization is a weakly decreasing function of Stokes I flux, which suggests that IRS 5b is phenomenologically similar to other types of flare stars such as RS CVn binaries. The variability timescale of the polarized flux is about a month, and the magnetosphere of IRS 5b must be very large in size. The Class I protostar IRS 7A was detected once in circularly polarized radio emission, even though IRS 7A drives a thermal radio jet. This detection implies that the radio emission from the magnetosphere of a young protostar can escape the absorption by the partially ionized wind at least once in a while. The properties of IRS 7A and IRS 5b suggests that Class I protostars have organized peristellar magnetic fields of a few kilogauss and that the detectability of magnetospheric emission may depend on the evolutionary status of protostar. Also reported is the detection of circularly polarized radio emission toward the variable radio source B5.
Optical high-resolution spectra of the R Coronae Borealis star V CrA at light maximum and during minimum light arediscussed. Abundance analysis confirms previous results showing that V CrA has the composition of the small subclass of R Coronae Borealis (RCB) stars know as `minority RCBs, i.e., the Si/Fe and S/Fe ratios are 100 times their solar values. A notable novel result for RCBs is the detection of the 1-0 Swan system $^{12}$C$^{13}$C bandhead indicating that $^{13}$C is abundant: spectrum synthesis shows that $^{12}$C/$^{13}$C is about 3 to 4. Absorption line profiles are variable at maximum light with some lines showing evidence of splitting by about 10 km s$^{-1}$. A spectrum obtained as the star was recovering from a deep minimum shows the presence of cool C$_2$ molecules with a rotational temperature of about 1200K, a temperature suggestive of gas in which carbon is condensing into soot. The presence of rapidly outflowing gas is shown by blue-shifted absorption components of the Na {sc i} D and K {sc i} 7698 AA resonance lines.
We report JVLA 8-10 GHz ($lambda$=3.0-3.7 cm) monitoring observations toward the YSO cluster R Coronae Australis (R,CrA), taken in 2012, from March 15 to September 12. These observations were planned to measure the radio flux variabilities in timescales from 0.5 hours to several days, to tens of days, and up to $sim$200 days. We found that among the YSOs detectable in individual epochs, in general, the most reddened objects in the textit{Spitzer} observations show the highest mean 3.5 cm Stokes textit{I} emission, and the lowest fractional variabilities on $<$200-day timescales. The brightest radio flux emitters in our observations are the two reddest sources IRS7W and IRS7E. In addition, by comparing with observations taken in 1996-1998 and 2005, we found that the radio fluxes of these two sources have increased by a factor $sim$1.5. The mean 3.5-cm fluxes of the three Class I/II sources IRSI, IRS2, and IRS6 appear to be correlated with their accretion rates derived by a previous near infrared line survey. The weakly accreting Class I/II YSOs, or those in later evolutionary stages, present radio flux variability on $<$0.5-hour timescales. Some YSOs were detected only during occasional flaring events. The source R,CrA went below our detection limit during a few fading events.
449 - Belen Lopez Marti 2010
We combine published optical and near-infrared photometry to identify new low-mass candidate members in an area of about 0.64 deg^2 in Corona Australis, using the S-parameter method. Five new candidate members of the region are selected, with estimated ages between 3 and 15 Myr, and masses between 0.05 and 0.15 M_Sun. Using Spitzer photometry, we confirm that these objects are not surrounded by optically thick disks. However, one of them is found to display excess at 24 micron, thus suggesting it harbours a disk with an inner hole. With an estimated mass of 0.07 M_Sun according to the SED fitting, this is one of the lowest-mass objects reported to possess a transitional disk. Including these new members, the fraction of disks is about 50% among the total Corona Australis population selected by the same criteria, lower than the 70% fraction reported earlier for this region. Even so, we find a ratio of transitional to primordial disks (45%) very similar to the value derived by other authors. This ratio is higher than for solar-type stars (5-10%), suggesting that disk evolution is faster in the latter, and/or that the transitional disk stage is not such a short-lived step in the case of very low-mass objects. However, this impression needs to be confirmed with better statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا