Do you want to publish a course? Click here

The early stage of a cosmic collision? XMM-Newton unveils two obscured AGN in the galaxy pair ESO509-IG066

59   0   0.0 ( 0 )
 Added by Matteo Guainazzi
 Publication date 2004
  fields Physics
and research's language is English
 Authors M.Guainazzi




Ask ChatGPT about the research

We report the XMM-Newton discovery of a X-ray bright AGN pair in the interacting galaxy system ESO509-IG066. Both galaxies host an X-ray luminous (L_X ~10^{43} erg/s) obscured nucleus with column densities N_H~7x10^{22} and N_H~5x10^{21} atoms/cm/cm. The optical morphology is only mildly disturbed, suggesting a merging system in the early stage of its evolution. Still, the pair is probably gravitationally bound, and might eventually evolve into a compact, fully gas embedded systems such as NGC6240.



rate research

Read More

135 - A. Corral 2014
The majority of active galactic nuclei (AGN) are obscured by large amounts of absorbing material that makes them invisible at many wavelengths. X-rays, given their penetrating power, provide the most secure way for finding these AGN. The XMM-Newton serendipitous source catalog is the largest catalog of X-ray sources ever produced; it contains about half a million detections. These sources are mostly AGN. We have derived X-ray spectral fits for very many 3XMM-DR4 sources ($gtrsim$ 114 000 observations, corresponding to $sim$ 77 000 unique sources), which contain more than 50 source photons per detector. Here, we use a subsample of $simeq$ 1000 AGN in the footprint of the SDSS area (covering 120 deg$^2$) with available spectroscopic redshifts. We searched for highly obscured AGN by applying an automated selection technique based on X-ray spectral analysis that is capable of efficiently selecting AGN. The selection is based on the presence of either a) flat rest-frame spectra; b) flat observed spectra; c) an absorption turnover, indicative of a high rest-frame column density; or d) an Fe K$alpha$ line with an equivalent width > 500 eV. We found 81 highly obscured candidate sources. Subsequent detailed manual spectral fits revealed that 28 of them are heavily absorbed by column densities higher than 10$^{23}$ cm$^{-2}$. Of these 28 AGN, 15 are candidate Compton-thick AGN on the basis of either a high column density, consistent within the 90% confidence level with N$_{rm H}$ $>$10$^{24}$ cm$^{-2}$, or a large equivalent width (>500 eV) of the Fe K$alpha$ line. Another six are associated with near-Compton-thick AGN with column densities of $sim$ 5$times$10$^{23}$ cm$^{-2}$. A combination of selection criteria a) and c) for low-quality spectra, and a) and d) for medium- to high-quality spectra, pinpoint highly absorbed AGN with an efficiency of 80%.
We report the discovery of an active galactic nucleus (AGN) pair in the interacting galaxy system IRAS 20210+1121 at z = 0.056. An XMM-Newton observation reveals the presence of an obscured (Nh ~ 5 x 10^{23} cm^-2), Seyfert-like (L_{2-10 keV} = 4.7 x 10^{42} erg/s) nucleus in the northern galaxy, which lacks unambiguous optical AGN signatures. Our spectral analysis also provides strong evidence that the IR-luminous southern galaxy hosts a Type 2 quasar embedded in a bright starburst emission. In particular, the X-ray primary continuum from the nucleus appears totally depressed in the XMM-Newton band as expected in case of a Compton-Thick absorber, and only the emission produced by Compton scattering (reflection) of the continuum from circumnuclear matter is seen. As such, IRAS 20210+1121 seems to provide an excellent opportunity to witness a key, early phase in the quasar evolution predicted by the theoretical models of quasar activation by galaxy collisions.
The distribution of hot interstellar medium in early-type galaxies bears the imprint of the various astrophysical processes it underwent during its evolution. The X-ray observations of these galaxies have identified various structural features related to AGN and stellar feedback and environmental effects such as merging and sloshing. In our XMM-Newton Galaxy Atlas (NGA) project, we analyze archival observations of 38 ETGs, utilizing the high sensitivity and large field of view of XMM-Newton to construct spatially resolved 2D spectral maps of the hot gas halos. To illustrate our NGA data products in conjunction with the Chandra Galaxy Atlas (Kim et al. 2019), we describe two distinct galaxies - NGC 4636 and NGC 1550, in detail. We discuss their evolutionary history with a particular focus on the asymmetric distribution of metal-enriched, low-entropy gas caused by sloshing and AGN- driven uplift. We will release the NGA data products to a dedicated website, which users can download to perform further analyses.
129 - P. Grandi 2007
We present an observation of XMM-Newton that unambiguously reveals the ``Seyfert 2 nature of the Broad Line Radio Galaxy 3C 445. For the first time the soft excess of this source has been resolved. It consists of unobscured scattered continuum flux and emission lines, likely produced in a warm photoionized gas near the pole of an obscuring torus. The presence of circumnuclear (likely stratified) matter is supported by the complex obscuration of the nuclear region. Seventy percent of the nuclear radiation (first component) is indeed obscured by a column density ~4*10^{23} cm^{-2}, and 30 % (second component) is filtered by ~7* 10^{22} cm^{-2}. The first component is nuclear radiation directly observed by transmission through the thicker regions. The second one is of more uncertain nature. If the observer has a deep view into the nucleus but near the edge of the torus, it could be light scattered by the inner wall of the torus and/or by photoionized gas within the Broad Line Region observed through the thinner rim of the circumnuclear matter.
We present the joint Chandra, XMM-Newton and NuSTAR analysis of two nearby Seyfert galaxies, NGC 3081 and ESO 565-G019. These are the only two having Chandra data in a larger sample of ten low redshift ($z le 0.05$), candidates Compton-thick Active Galactic Nuclei (AGN) selected in the 15-150 keV band with Swift-BAT that were still lacking NuSTAR data. Our spectral analysis, performed using physically-motivated models, provides an estimate of both the line-of-sight (l.o.s.) and average (N$_{H,S}$) column densities of the two torii. NGC 3081 has a Compton-thin l.o.s. column density N$_{H,z}$=[0.58-0.62] $times 10^{24}$cm$^{-2}$, but the N$_{H,S}$, beyond the Compton-thick threshold (N$_{H,S}$=[1.41-1.78] $times 10^{24}$cm$^{-2}$), suggests a patchy scenario for the distribution of the circumnuclear matter. ESO 565-G019 has both Compton-thick l.o.s. and N$_{H,S}$ column densities (N$_{H,z}>$2.31 $times 10^{24}$cm$^{-2}$ and N$_{H,S} >$2.57 $times 10^{24}$cm$^{-2}$, respectively). The use of physically-motivated models, coupled with the broad energy range covered by the data (0.6-70 keV and 0.6-40 keV, for NGC 3081 and ESO 565-G019, respectively) allows us to constrain the covering factor of the obscuring material, which is C$_{TOR}$=[0.63-0.82] for NGC 3081, and C$_{TOR}$=[0.39-0.65] for ESO 565-G019.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا