Do you want to publish a course? Click here

VLBI detections of a source weaker than 100 mJy at 86 GHz

332   0   0.0 ( 0 )
 Added by Enno Middelberg
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a new phase-calibration strategy to calibrate the phase of 86 GHz VLBI observations of the FR I radio galaxy NGC 4261. Instead of switching between a calibrator source and the target source, the target was observed while rapidly switching between the target frequency and a lower reference frequency. Self-calibration at the reference frequency yielded phase corrections which were multiplied with the frequency ratio and applied to the target frequency visibilities. The resulting detection of NGC 4261 is, to our knowledge, the first of NGC 4261 with 86 GHz VLBI, and it is also the weakest source so far detected with VLBI at that frequency.



rate research

Read More

75 - S. Lee 2006
We present results from a large global VLBI(Very Long Baseline Interferometry) survey of compact radio sources at 86 GHz which started in October 2001. The main goal of the survey is to increase the total number of objects accessible for future 3mm-VLBI imaging by factors of 3-5. The survey data reach the baseline sensitivity of 0.1 Jy, and image sensitivity of better than 10 mJy/beam. To date, a total of 127 compact radio sources have been observed. The observations have yielded images for 109 sources, and only 6 sources have not been detected. Flux densities and sizes of core and jet components of all detected sources have been measured using Gaussian model fitting. From these measurements, brightness temperatures have been estimated, taking into account resolution limits of the data. Here, we compare the brightness temperatures of the cores and secondary jet components with similar estimates obtained from surveys at longer wavelengths (e.g. 15 GHz). This approach can be used to study questions related to mechanisms of initial jet acceleration (accelerating or decelerating sub-pc jets?) and jet composition (electron-positron or electron-proton plasma?).
(abridged) Very long baseline interferometry (VLBI) observations at 86$,$GHz (wavelength, $lambda = 3,$mm) reach a resolution of about 50 $mu$as, probing the collimation and acceleration regions of relativistic outflows in active galactic nuclei. To extend the statistical studies of compact extragalactic jets, a large global 86 GHz VLBI survey of 162 radio sources was conducted in 2010-2011 using the Global Millimeter VLBI Array. The survey data attained a typical baseline sensitivity of 0.1 Jy and a typical image sensitivity of 5 mJy/beam, providing successful detections and images for all of the survey targets. For 138 objects, the survey provides the first ever VLBI images made at 86 GHz. Gaussian model fitting of the visibility data was applied to represent the structure of the sources. The Gaussian model-fit-based estimates of brightness temperature ($T_mathrm{b}$) at the jet base (core) and in moving regions (jet components) downstream from the core were compared to the estimates of $T_mathrm{b}$ limits made directly from the visibility data, demonstrating a good agreement between the two methods. The apparent brightness temperature estimates for the jet cores in our sample range from $2.5 times 10^{9},$K to $ 1.3times 10^{12},$K. A population model with a single intrinsic value of brightness temperature, $T_mathrm{0}$, is applied to reproduce the observed $T_mathrm{b}$ distribution. It yields $T_mathrm{0} = (3.77^{+0.10}_{-0.14}) times 10^{11},$K for the jet cores, implying that the inverse Compton losses dominate the emission. In the jet components, $T_mathrm{0} =(1.42^{+0.16}_{-0.19})times 10^{11},$K is found, slightly higher than the equipartition limit of $sim5times 10^{10},$K expected for these jet regions. For objects with sufficient structural detail detected, the adiabatic energy losses dominate the observed changes of $T_mathrm{b}$ along the jet.
The Galactic Center supermassive black hole Sagittarius A* (Sgr A*) is one of the most promising targets to study the dynamics of black hole accretion and outflow via direct imaging with very long baseline interferometry (VLBI). At 3.5 mm (86 GHz), the emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). We present the first observations of Sgr A* with the phased Atacama Large Millimeter/submillimeter Array (ALMA) joining the GMVA. Our observations achieve an angular resolution of ~87{mu}as, improving upon previous experiments by a factor of two. We reconstruct a first image of the unscattered source structure of Sgr A* at 3.5 mm, mitigating effects of interstellar scattering. The unscattered source has a major axis size of 120 $pm$ 34{mu}as (12 $pm$ 3.4 Schwarzschild radii), and a symmetrical morphology (axial ratio of 1.2$^{+0.3}_{-0.2}$), which is further supported by closure phases consistent with zero within 3{sigma}. We show that multiple disk-dominated models of Sgr A* match our observational constraints, while the two jet-dominated models considered are constrained to small viewing angles. Our long-baseline detections to ALMA also provide new constraints on the scattering of Sgr A*, and we show that refractive scattering effects are likely to be weak for images of Sgr A* at 1.3 mm with the Event Horizon Telescope. Our results provide the most stringent constraints to date for the intrinsic morphology and refractive scattering of Sgr A*, demonstrating the exceptional contribution of ALMA to millimeter VLBI.
The compact radio source Sagittarius~A$^*$ (Sgr~A$^*$)in the Galactic Center is the primary supermassive black hole candidate. General relativistic magnetohydrodynamical (GRMHD) simulations of the accretion flow around Sgr,A$^*$ predict the presence of sub-structure at observing wavelengths of $sim 3$,mm and below (frequencies of 86,GHz and above). For very long baseline interferometry (VLBI) observations of Sgr,A$^*$ at this frequency the blurring effect of interstellar scattering becomes subdominant, and arrays such as the High Sensitivity Array (HSA) and the global mm-VLBI Array (GMVA) are now capable of resolving potential sub-structure in the source. Such investigations improve our understanding of the emission geometry of the mm-wave emission of Sgr,A$^*$, which is crucial for constraining theoretical models and for providing a background to interpret 1,mm VLBI data from the Event Horizon Telescope (EHT). We performed high-sensitivity very long baseline interferometry (VLBI) observations of Sgr,A$^*$ at 3,mm using the Very Long Baseline Array (VLBA) and the Large Millimeter Telescope (LMT) in Mexico on two consecutive days in May 2015, with the second epoch including the Green Bank Telescope (GBT). We find an overall source geometry that matches previous findings very closely, showing a deviation in fitted model parameters less than 3% over a time scale of weeks and suggesting a highly stable global source geometry over time. The reported sub-structure in the 3,mm emission of Sgr,A$^*$ is consistent with theoretical expectations of refractive noise on long baselines. However, comparing our findings with recent results from 1,mm and 7,mm VLBI observations, which also show evidence for east-west asymmetry, an intrinsic origin cannot be excluded. Confirmation of persistent intrinsic substructure will require further VLBI observations spread out over multiple epochs.
410 - Fabrice Herpin 2006
We study the polarization of the SiO maser emission in a representative sample of evolved stars in order to derive an estimate of the strength of the magnetic field, and thus determine the influence of this magnetic field on evolved stars. We made simultaneous spectroscopic measurements of the 4 Stokes parameters, from which we derived the circular and linear polarization levels. The observations were made with the IF polarimeter installed at the IRAM 30m telescope. A discussion of the existing SiO maser models is developed in the light of our observations. Under the Zeeman splitting hypothesis, we derive an estimate of the strength of the magnetic field. The averaged magnetic field varies between 0 and 20 Gauss, with a mean value of 3.5 Gauss, and follows a 1/r law throughout the circumstellar envelope. As a consequence, the magnetic field may play the role of a shaping, or perhaps collimating agent of the circumstellar envelopes in evolved objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا