Do you want to publish a course? Click here

The XENON Dark Matter Search Experiment

61   0   0.0 ( 0 )
 Added by Kaixuan Ni
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The XENON experiment aims at the direct detection of dark matter in the form of WIMPs (Weakly Interacting Massive Particles) via their elastic scattering off Xe nuclei. A fiducial mass of 1000 kg, distributed in ten independent liquid xenon time projection chambers(LXeTPCs) will be used to probe thelowest interaction cross section predicted by SUSY models. The TPCs are operated in dual (liquid/gas) phase, to allow a measurement of nuclear recoils down to 16keV energy, via simultaneous detection of the ionization, through secondary scintillation in the gas, and primary scintillation in the liquid. Thedistinct ratio of primary to secondary scintillation for nuclear recoils from WIMPs (or neutrons), and for electron recoils from background, iskey to the event-by-event discrimination capability of XENON. A dual phase xenon prototype has been realized and is currently being tested, along with otherprototypes dedicated to other measurements relevant to the XENON program. As part of the R&D phase, we will realize and move underground a first XENON module (XENON10) with at least 10 kg fiducial mass to measure the background rejection capability and to optimize the conditions for continuous and stable detector operation underground. We present some of the results from the ongoing R&D and summarize the expected performance of the 10 kg experiment, from MonteCarlo simulations. The main design features of the 100 kg detector unit(XENON100), with which we envisage to make up the 1 tonne sensitive mass ofXENON1T will also be presented.



rate research

Read More

61 - E. Aprile 2002
XENON is a novel liquid xenon experiment concept for a sensitive dark matter search using a 1-tonne active target, distributed in an array of ten independent time projection chambers. The design relies on the simultaneous detection of ionization and scintillation signals in liquid xenon, with the goal of extracting as much information as possible on an event-by-event basis, while maintaining most of the target active. XENON is expected to have effective and redundant background identification and discrimination power, higher than 99.5%, and to achieve a very low threshold, on the order of 4 keV visible recoil energy. Based on this expectation and the 1-tonne mass of active xenon, we project a sensitivity of 0.0001 events/kg/day, after 3 yr operation in an appropriate underground location. The XENON experiment has been recently proposed to the National Science Foundation (NSF) for an initial development phase leading to the development of the 100 kg unit module.
159 - X. G. Cao , X. Chen , Y. H. Chen 2014
PandaX is a large upgradable liquid-xenon detector system that can be used for both direct dark-matter detection and $^{136}$Xe double-beta decay search. It is located in the Jinping Deep-Underground Laboratory in Sichuan, China. The detector operates in dual-phase mode, allowing detection of both prompt scintillation, and ionization charge through proportional scintillation. The central time projection chamber will be staged, with the first stage accommodating a target mass of about 120,kg. In stage II, the target mass will be increased to about 0.5,ton. In the final stage, the detector can be upgraded to a multi-ton target mass. In this paper a detailed description of the stage-I detector design and performance results established during the commissioning phase is presented.
70 - Giulia DImperio 2018
The SABRE (Sodium Iodide with Active Background REjection) experiment will search for an annually modulating signal from dark matter using an array of ultra-pure NaI(Tl) detectors surrounded by an active scintillator veto to further reduce the background. The first phase of the experiment is the SABRE Proof of Principle (PoP), a single 5 kg crystal detector operated in a liquid scintillator filled vessel at Laboratori Nazionali del Gran Sasso (LNGS). The SABRE-PoP installation is underway with the goal of running in 2018 and performing the first in situ measurement of the crystal background, testing the veto efficiency, and validating the SABRE concept. The second phase of SABRE will be twin arrays of NaI(Tl) detectors operating at LNGS and at the Stawell Underground Physics Laboratory (SUPL) in Australia. By locating detectors in both hemispheres, SABRE will minimize seasonal systematic effects. This paper presents the status report of the SABRE activities as well as the results from the most recent Monte Carlo simulation and the expected sensitivity.
Preliminary results obtained with 320g bolometers with simultaneous ionization and heat measurements are described. After a few weeks of data taking, data accumulated with one of these detectors are beginning to exclude the upper part of the DAMA region. Prospects for the present run and the second stage of the experiment, EDELWEISS-II, using an innovative reversed cryostat allowing data taking with 100 detectors, are briefly described.
The EDELWEISS Dark Matter Search uses low-temperature Ge detectors with heat and ionisation read-out to identify nuclear recoils induced by elastic collisions with WIMPs from the galactic halo. Preliminary results obtained with 320g bolometers are described. After a few weeks of data taking, data accumulated with one of these detectors already allow to reach the upper part of the DAMA region. Prospects for the present run and the second stage of the experiment, EDELWEISS-II, using an innovative reversed cryostat allowing data taking with 100 detectors, are briefly described.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا