Do you want to publish a course? Click here

Star Formation at Redshift One: Preliminary results from an H-alpha Survey

138   0   0.0 ( 0 )
 Added by Michelle Doherty
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first successful demonstration of multi-object near-infrared spectroscopy on high redshift galaxies. Our objective is to address the true star formation history of the universe at z~1, a crucial epoch which some have suggested is the peak of star formation activity. By using H-alpha -the same robust star formation indicator used at low-z - redshifted into the J- and H-bands, we can trace star formation without the systematic uncertainties of different calibrators, or the extreme dust extinction in the rest-UV, which have plagued previous efforts. We are using the instrument CIRPASS (the Cambridge Infra-Red PAnoramic Survey Spectrograph), in multi-object mode, which has been successfully demonstrated on the Anglo-Australian Telescope (AAT) and the William Herschel Telescope (WHT). CIRPASS has 150 fibres deployable over ~40arcmin on the AAT and ~15arcmin on the WHT. Here we present preliminary results from one of our fields observed with the WHT: H-alpha detections of z~1 galaxies in the Hubble Deep Field North.



rate research

Read More

274 - Chun Ly (1 , 2 , 3 2010
[Abridged] We present new measurements of the H-alpha luminosity function (LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on 1.18$mu$m narrowband data from the NEWFIRM H-alpha Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth ($approx1.9times10^{-17}$ erg s$^{-1}$ cm$^{-2}$ in H-alpha at 3$sigma$) and areal coverage (0.82 deg$^2$) complements other recent H-alpha studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required. The dust-corrected LF is well-described by a Schechter function with L*=10^{43.00pm0.52} ergs s^{-1}, phi*=10^{-3.20pm0.54} Mpc^{-3}, and alpha=-1.6pm0.19. We compare our H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha SFR density of 10^{-1.00pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z~1. We discuss how these results compare to other H-alpha surveys at z~0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure.
After a successful eleven-year campaign at Kitt Peak, we moved the Wisconsin H-Alpha Mapper (WHAM) to Cerro Tololo in early 2009. Here we present some of the early data after a few months under southern skies. These maps begin to complete the first all-sky, kinematic survey of the diffuse H-alpha emission from the Milky Way. Much of this emission arises from the Warm Ionized Medium (WIM), a significant component of the ISM that extends a few kiloparsecs above the Galactic disk. While this first look at the data focuses on the H-alpha survey, WHAM is also capable of observing many other optical emission lines, revealing fascinating trends in the temperature and ionization state of the WIM. Our ongoing studies of the physical conditions of diffuse ionized gas will continue from the southern hemisphere following the H-alpha survey. In addition, future observations will cover the full velocity range of the Magellanic Stream, Bridge, and Clouds to trace the ionized gas associated with these neighboring systems.
We present an analysis of the star formation properties of field galaxies within the local volume out to a recession velocity limit of 3000 km/s. A parent sample of 863 star-forming galaxies is used to calculate a B-band luminosity function. This is then populated with star formation information from a subsample of 327 galaxies, for which we have H alpha imaging, firstly by calibrating a relationship between galaxy B-band luminosity and star formation rate, and secondly by a Monte Carlo simulation of a representative sample of galaxies, in which star formation information is randomly sampled from the observed subset. The total star formation rate density of the local Universe is found to be between 0.016 and 0.023 MSun/yr/cubic Mpc, with the uncertainties being dominated by the internal extinction correction used in converting measured H alpha fluxes to star formation rates. If our internally derived B-band luminosity function is replaced by one from the Sloan Digital Sky Survey blue sequence, the star formation rate densities are approx. 60% of the above values. We also calculate the contribution to the total star formation rate density from galaxies of different luminosities and Hubble T-types. The largest contribution comes from bright galaxies with B absolute mag of approx. -20 mag, and the total contribution from galaxies fainter than -15.5 mag is less than 10%. Almost 60% of the star formation rate density comes from galaxies of types Sb, Sbc or Sc; 9% from galaxies earlier than Sb and 33% from galaxies later than Sc. Finally, 75 - 80% of the total star formation in the local Universe is shown to be occurring in disk regions, defined as being >1 kpc from the centres of galaxies.
The redshift range z=4-6 marks a transition phase between primordial and mature galaxy formation in which galaxies considerably increase their stellar mass, metallicity, and dust content. The study of galaxies in this redshift range is therefore important to understand early galaxy formation and the fate of galaxies at later times. Here, we investigate the burstiness of the recent star-formation history (SFH) of 221 $zsim4.5$ main-sequence galaxies at log(M) > 9.7 by comparing their ultra-violet (UV) continuum, H$alpha$ luminosity, and H$alpha$ equivalent-width (EW). The H$alpha$ properties are derived from the Spitzer [3.6$mu$m]-[4.5$mu$m] broad-band color, thereby properly taking into account model and photometric uncertainties. We find a significant scatter between H$alpha$ and UV-derived luminosities and star-formation rates (SFRs). About half of the galaxies show a significant excess in H$alpha$ compared to expectations from a constant smooth SFH. We also find a tentative anti-correlation between H$alpha$ EW and stellar mass, ranging from 1000$r{A}$ at log(M) < 10 to below 100$r{A}$ at log(M) > 11. Consulting models suggests that most $zsim4.5$ galaxies had a burst of star-formation within the last 50 Myrs, increasing their SFRs by a factor of > 5. The most massive galaxies on the other hand might decrease their SFRs, and may be transitioning to a quiescent stage by z=4. We identify differential dust attenuation (f) between stars and nebular regions as the main contributor to the uncertainty. With local galaxies selected by increasing H$alpha$ EW (reaching values similar to high-z galaxies), we predict that f approaches unity at $z>4$ consistent with the extrapolation of measurements out to z=2.
We present the first results and design from the redshift z~9-10 Brightest of the Reionizing Galaxies {it Hubble Space Telescope} survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from {lambda}=0.35{mu}m to {lambda}=1.7{mu}m. We analyze the initial ~130 arcmin$^2$ of area over 28 independent lines of sight (~25% of the total planned) to search for z>7 galaxies using a combination of Lyman break and photometric redshift selections. From an effective comoving volume of (5-25) $times 10^5$ Mpc$^3$ for magnitudes brighter than $m_{AB}=26.5-24.0$ in the $H_{160}$-band respectively, we find five galaxy candidates at z~8.3-10 detected at high confidence (S/N>8), including a source at z~8.4 with mAB=24.5 (S/N~22), which, if confirmed, would be the brightest galaxy identified at such early times (z>8). In addition, BoRG[z9-10] data yield four galaxies with $7.3 lesssim z lesssim 8$. These new Lyman break galaxies with m$lesssim26.5$ are ideal targets for follow-up observations from ground and space based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا