Do you want to publish a course? Click here

A population of hot, dusty ultra-luminous galaxies at z~2

69   0   0.0 ( 0 )
 Added by Scott C. Chapman
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report spectroscopic redshifts for 18 microJy-radio galaxies at mean redshift of z=2.2 that are faint at both submmillimeter (submm) and optical wavelengths. While the radio fluxes of these galaxies could indicate far-infrared (far-IR) luminosities comparable to high-redshift submillimeter-selected galaxies (>10^12 Lsun), none are detected in the submm. We propose that this new population of galaxies represents an extension of the high-redshift submm galaxy population, but with hotter characteristic dust temperatures that shift the peak of their far-IR emission to shorter wavelengths, reducing the submm flux below the sensitivity of current instruments. Therefore, surveys in the submm waveband may miss up to half of the most luminous, dusty galaxies at z~2. Mid-infrared observations with Spitzer will be a powerful tool to test this hypothesis.



rate research

Read More

339 - Arjun Dey 2008
Observations with Spitzer Space Telescope have recently revealed a significant population of high-redshift z~2 dust-obscured galaxies (DOGs) with large mid-IR to UV luminosity ratios. These galaxies have been missed in traditional optical studies of the distant universe. We present a simple method for selecting this high-z population based solely on the ratio of the observed mid-IR 24um to optical R-band flux density. In the 8.6 sq.deg Bootes NDWFS Field, we uncover ~2,600 DOG candidates (= 0.089/sq.arcmin) with 24um flux densities F24>0.3mJy and (R-[24])>14 (i.e., F[24]/F[R] > 1000). These galaxies have no counterparts in the local universe, and become a larger fraction of the population at fainter F24, representing 13% of the sources at 0.3~mJy. DOGs exhibit evidence of both star-formation and AGN activity, with the brighter 24um sources being more AGN- dominated. We have measured spectroscopic redshifts for 86 DOGs, and find a broad z distribution centered at <z>~2.0. Their space density is 2.82E-5 per cubic Mpc, similar to that of bright sub-mm-selected galaxies at z~2. These redshifts imply very large luminosities LIR>~1E12-14 Lsun. DOGs contribute ~45-100% of the IR luminosity density contributed by all z~2 ULIRGs, suggesting that our simple selection criterion identifies the bulk of z~2 ULIRGs. DOGs may be the progenitors of ~4L* present-day galaxies seen undergoing a luminous,short- lived phase of bulge and black hole growth. They may represent a brief evolution phase between SMGs and less obscured quasars or galaxies. [Abridged]
We confirm spectroscopically the existence of a population of galaxies at z>~2 with rest-frame optical colors similar to normal nearby galaxies. The galaxies were identified by their red near-infrared colors in deep images obtained with ISAAC on the Very Large Telescope. Redshifts of six galaxies with Js-Ks>2.3 were measured from optical spectra obtained with the Keck Telescope. Five out of six are in the range 2.43<=z<=3.52, demonstrating that the Js-Ks color selection is quite efficient. The rest-frame ultraviolet spectra of confirmed z>2 galaxies display a range of properties, with two galaxies showing emission lines characteristic of AGN, two having Ly-alpha in emission, and one showing interstellar absorption lines only. Their full spectral energy distributions are well described by constant star formation models with ages 1.4-2.6 Gyr, except for one galaxy whose colors indicate a dusty starburst. The confirmed z>2 galaxies are very luminous, with Ks=19.2-19.9. Assuming that our bright spectroscopic sample is representative for the general population of Js-Ks selected objects, we find that the surface density of red z>~2 galaxies is ~0.9/arcmin^2 to Ks=21. The surface density is comparable to that of Lyman-break selected galaxies with Ks<21, when corrections are made for the different redshift distributions of the two samples. Although there will be some overlap between the two populations, most optical-break galaxies are too faint in the rest-frame ultraviolet to be selected as Lyman-break galaxies. The most straightforward interpretation is that star formation in typical optical-break galaxies started earlier than in typical Lyman-break galaxies. Optical-break galaxies may be the oldest and most massive galaxies yet identified at z>2, and could evolve into early-type galaxies and bulges.
We present new X-ray observations of luminous heavily dust-reddened quasars (HRQs) selected from infrared sky surveys. HRQs appear to be a dominant population at high redshifts and the highest luminosities, and may be associated with a transitional blowout phase of black hole and galaxy co-evolution models. Despite this, their high-energy properties have been poorly known. We use the overall sample of $10$ objects with XMM-Newton coverage to study the high-energy properties of HRQs at $left< L_{rm bol} right> = 10^{47.5}$ erg/s and $left< z right>= 2.5$. For the seven sources with strong X-ray detections, we perform spectral analyses. These find a median X-ray luminosity of $left< L_{rm 2-10,keV} right> = 10^{45.1}$ erg/s, comparable to the most powerful X-ray quasars known. The gas column densities are $N_{rm H}=(1$-$8)times 10^{22}$ cm$^{-2}$, in agreement with the amount of dust extinction observed. The dust to gas ratios are sub-Galactic, but are higher than found in local AGN. The intrinsic X-ray luminosities of HRQs are weak compared to the mid-infrared ($L_{rm 6mu m}$) and bolometric luminosities ($L_{rm bol}$), in agreement with findings for other luminous quasar samples. For instance, the X-ray to bolometric corrections range from $kappa_{rm bol}approx 50$-$3000$. The moderate absorption levels and accretion rates close to the Eddington limit ($left< lambda_{rm Edd} right>=1.06$) are in agreement with a quasar blowout phase. Indeed, we find that the HRQs lie in the forbidden region of the $N_{rm H}$-$lambda_{rm Edd}$ plane, and therefore that radiation pressure feedback on the dusty interstellar medium may be driving a phase of blowout that has been ongoing for a few $10^{5}$ years. The wider properties, including [OIII] narrow-line region kinematics, broadly agree with this interpretation.
56 - H.-W. Rix 1999
We present H-band observations of gravitationally lensed QSO host galaxies obtained with NICMOS on HST as part of the CfA-Arizona-Gravitational-Lens-Survey (CASTLES). The detections are greatly facilitated by the lensing magnification in these systems; we find that most hosts of radio-quiet QSOs (RQQ) at z~2 are of modest luminosity (L<L_*). They are 2-5 times fainter than the hosts of radio-loud QSOs at the same epoch. Compared to low redshifts, RQQ hosts at z~2 also support higher nuclear luminosities at given stellar host mass. This suggests that the supermassive black holes at their centers grew faster at early epochs than the stellar body of their surrounding host galaxies.
93 - C. Yang , A. Omont , A. Beelen 2016
(abridged) We report rest-frame submillimeter H2O emission line observations of 11 HyLIRGs/ULIRGs at z~2-4 selected among the brightest lensed galaxies discovered in the Herschel-ATLAS. Using the IRAM NOEMA, we have detected 14 new H2O emission lines. The apparent luminosities of the H2O emission lines are $mu L_{rm{H_2O}} sim 6-21 times 10^8 L_odot$, with velocity-integrated line fluxes ranging from 4-15 Jy km s$^{-1}$. We have also observed CO emission lines using EMIR on the IRAM 30m telescope in seven sources. The velocity widths for CO and H2O lines are found to be similar. With almost comparable integrated flux densities to those of the high-J CO line, H2O is found to be among the strongest molecular emitters in high-z Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O ($L_{rm{H_2O}}$) and infrared ($L_{rm{IR}}$) that $L_{rm{H_2O}} sim L_{rm{IR}}^{1.1-1.2}$, with our new detections. This correlation could be explained by a dominant role of far-infrared (FIR) pumping in the H2O excitation. Modelling reveals the FIR radiation fields have warm dust temperature $T_rm{warm}$~45-75 K, H2O column density per unit velocity interval $N_{rm{H_2O}}/Delta V gtrsim 0.3 times 10^{15}$ cm$^{-2}$ km$^{-1}$ s and 100 $mu$m continuum opacity $tau_{100} > 1$ (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of $Jgeq4$ H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation between $L_{rm{H_2O}}$ and $L_{rm{H_2O^+}}$ has been found in galaxies from low to high redshift. The velocity-integrated flux density ratio between H2O+ and H2O suggests that cosmic rays generated by strong star formation are possibly driving the H2O+ formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا