ATLAS vs. NextGen model atmospheres: a combined analysis of synthetic spectral energy distributions


Abstract in English

We carried out a critical appraisal of the two theoretical models, Kurucz ATLAS9 and PHOENIX/NextGen, for stellar atmosphere synthesis. Our tests relied on the theoretical fit of SEDs for a sample of 334 target stars along the whole spectral-type sequence. The best-fitting physical parameters of stars allowed a calibration of the temperature and bolometric scale. The main conclusions of our analysis are: i) the fitting accuracy of both theoretical libraries drastically degrades at low Teff; ii) comparing with empirical calibrations, both ATLAS and NextGen fits tend to predict slightly warmer Teff, but ATLAS provides in general a sensibly better fit; iii) there is a striking tendency of NextGen to label target stars with an effective temperature and surface gravity in excess with respect to ATLAS. This is a consequence of some ``degeneracy in the solution space, partly induced by the different input physics and geometry constraints. A different T(tau) vertical structure of stellar atmosphere seems also required for NextGen synthetic SEDs in order to better account for limb-darkening effects in cool stars, as supported by the recent observations of the EROS BLG2000-5 microlensing event.

Download