No Arabic abstract
The DAMA/NaI set-up of the DAMA experiment has been operative during seven annual cycles and has investigated several rare processes. In particular, it has been realised in order to investigate the model independent annual modulation signature for Dark Matter particles in the galactic halo. With the total exposure collected in the seven annual cycles (107731 kg day) a model independent evidence for the presence of a Dark Matter particle component in the galactic halo has been pointed out at 6.3 sigma C.L.. Some of the many possible corollary model dependent quests for the candidate particle have been presented as well.
The about 100 kg highly radiopure NaI(Tl) set-up of the DAMA project (DAMA/NaI) took data over seven annual cycles up to July 2002 and has achieved results on various rare processes. Its main aim has actually been the exploitation of the model independent WIMP annual modulation signature. After this conference the total exposure, collected during the seven annual cycles, was released. This cumulative exposure (107731 kg day) has given a model independent evidence for the presence of a Dark Matter particle component in the galactic halo at 6.3 sigma C.L.; this main result is summarised here. Some of the many possible corollary model dependent quests for the candidate particle are mentioned. At present, after about five years of new developments, a second generation low background set-up (DAMA/LIBRA with a mass of about 250 kg NaI(Tl)) was built and is taking data since March 2003. New R&D efforts toward a possible NaI(Tl) ton set-up, we proposed in 1996, have been funded and started in 2003.
The highly radiopure $simeq$ 250 kg NaI(Tl) DAMA/LIBRA set-up is running at the Gran Sasso National Laboratory of the I.N.F.N.. In this paper the first result obtained by exploiting the model independent annual modulation signature for Dark Matter (DM) particles is presented. It refers to an exposure of 0.53 ton$times$yr. The collected DAMA/LIBRA data satisfy all the many peculiarities of the DM annual modulation signature. Neither systematic effects nor side reactions can account for the observed modulation amplitude and contemporaneously satisfy all the several requirements of this DM signature. Thus, the presence of Dark Matter particles in the galactic halo is supported also by DAMA/LIBRA and, considering the former DAMA/NaI and the present DAMA/LIBRA data all together (total exposure 0.82 ton$times$yr), the presence of Dark Matter particles in the galactic halo is supported at 8.2 $sigma$ C.L..
DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N.. Here the results obtained with a further exposure of 0.34 ton x yr are presented. They refer to two further annual cycles collected one before and one after the first DAMA/LIBRA upgrade occurred on September/October 2008. The cumulative exposure with those previously released by the former DAMA/NaI and by DAMA/LIBRA is now 1.17 ton x yr, corresponding to 13 annual cycles. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 sigma C.L. for the cumulative exposure). In particular, with the cumulative exposure the modulation amplitude of the single-hit events in the (2 -- 6) keV energy interval measured in NaI(Tl) target is (0.0116 +- 0.0013) cpd/kg/keV; the measured phase is (146 +- 7) days and the measured period is (0.999 +- 0.002) yr, values well in agreement with those expected for the DM particles.
The DAMA/LIBRA experiment, running at the Gran Sasso National Laboratory of the I.N.F.N. in Italy, has a sensitive mass of about 250 kg highly radiopure NaI(Tl). It is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The present DAMA/LIBRA experiment and the former DAMA/NaI one (the first generation experiment having an exposed mass of about 100 kg) have released so far results corresponding to a total exposure of 1.17 ton yr over 13 annual cycles. They provide a model independent evidence of the presence of DM particles in the galactic halo at 8.9 sigma C.L.. A short summary of the obtained results is presented and future perspectives of the experiment mentioned.
The DAMA/LIBRA experiment ($sim$ 250 kg of highly radio-pure NaI(Tl)) is running deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. Here we briefly recall the results obtained in its first phase of measurements (DAMA/LIBRA--phase1, total exposure: 1.04 ton $times$ yr). DAMA/LIBRA--phase1 and the former DAMA/NaI (cumulative exposure: $1.33$ ton $times$ yr) give evidence at 9.3 $sigma$ C.L. for the presence of DM particles in the galactic halo by exploiting the model-independent DM annual modulation signature. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. At present DAMA/LIBRA--phase2 is running with increased sensitivity.