Do you want to publish a course? Click here

Discovery of hard non-thermal pulsed X-ray emission from the anomalous X-ray pulsar 1E 1841-045

59   0   0.0 ( 0 )
 Added by Lucien Kuiper
 Publication date 2004
  fields Physics
and research's language is English
 Authors L. Kuiper




Ask ChatGPT about the research

We report the discovery of non-thermal pulsed X-ray/soft gamma-ray emission up to about 150 keV from the anomalous X-ray pulsar AXP 1E 1841-045 located near the centre of supernova remnant Kes 73 using RXTE PCA and HEXTE data. The morphology of the double-peaked pulse profile changes rapidly with energy from 2 keV up to about 8 keV, above which the pulse shape remains more or less stable. The pulsed spectrum is very hard, its shape above 10 keV can be described well by a power law with a photon index of 0.94 +/- 0.16. 1E 1841-045 is the first AXP for which such very-hard pulsed emission has been detected, which points to an origin in the magnetosphere of a magnetar.



rate research

Read More

We have carried out a search for the optical and infrared counterpart of the Anomalous X-ray Pulsar 1E 1841-045, which is located at the center of the supernova remnant Kes73. We present the first deep optical and infrared images of the field of 1E 1841-045, as well as optical spectroscopy results that exclude the brightest objects in the error circle as possible counterparts. A few of the more reddened objects in this region can be considered as particularly interesting candidates, in consideration of the distance and absorption expected from the association with Kes73. The strong interstellar absorption in the direction of the source does not allow to completely exclude the presence of main sequence massive companions.
Swift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18-140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8 - 25)E38 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in 1E 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.
61 - L.Kuiper 2006
We report on the discovery of hard spectral tails for energies above 10 keV in the total and pulsed spectra of anomalous X-ray pulsars 1RXS J1708-4009, 4U 0142+61 and 1E 2259+586 using RXTE PCA (2-60 keV) and HEXTE (15-250 keV) data and INTEGRAL IBIS ISGRI (20-300 keV) data. Improved spectral information on 1E 1841-045 is presented. The pulsed and total spectra measured above 10 keV have power-law shapes and there is so far no significant evidence for spectral breaks or bends up to ~150 keV. The pulsed spectra are exceptionally hard with indices measured for 4 AXPs approximately in the range -1.0 -- 1.0. We also reanalyzed archival CGRO COMPTEL (0.75-30 MeV) data to search for signatures from our set of AXPs. No detections can be claimed, but the obtained upper-limits in the MeV band indicate that for 1RXS J1708-4009, 4U 0142+61 and 1E 1841-045 strong breaks must occur somewhere between 150 and 750 keV.
We report the analysis result of UV/X-ray emission from AR~Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and a M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M-type star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase, and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M-type star surface rather than from the accretion column on the WDs star similar to the usual IPs. Beside, the observed X-ray emission also modulates with WDs spin with a pulse fraction of $sim 14%$. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR~Scorpii are accelerated to a relativistic speed, and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, the evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M-type star surface heats up the plasma to a temperature of several keV, and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WDs closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.
We present X-ray imaging, timing, and phase resolved spectroscopy of the anomalous X-ray pulsar 1E 2259+58.6 using the Chandra X-ray Observatory. The spectrum is well described by a power law plus blackbody model with power law index = 3.6(1), kT_BB = 0.412(6) keV, and N_H=0.93(3) x 10^{22} cm^{-2}; we find no evidence for spectral features (0.5-7.0 keV). We derive a new, precise X-ray position for the source and determine its spin period, P=6.978977(24) s. Time resolved X-ray spectra show no significant variation as a function of pulse phase. We have detected excess emission beyond 4 arcsec from the central source extending to beyond 100 arcsec, due to the supernova remnant and possibly dust scattering from the interstellar medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا