Long-term (up to 10000d) monitoring has been undertaken for 41 Seyferts in the near-IR (JHKL). All but 2 showed variability, with K ampl in the range <0.1 to > 1.1 mags. The timescale for detectable change is from about one week to a few years. A simple cross-correlation study shows evidence for delays of up to several hundred days between the variations seen at the shortest wavelengths and the longest in many galaxies. In particular, the data for F9 now extend to twice the interval covered earlier and the delay between its UV and IR outputs persists. An analysis of the fluxes shows that, for any given galaxy, the colours of the variable component are usually independent of the level of activity. The state of activity can be parameterized. Taken over the whole sample, the colours of the variable components fall within moderately narrowly defined ranges. In particular, the H-K colour is appropriate to a black body of temperature 1600K. The H-K excess for a heavily reddened nucleus can be determined and used to find E_{B-V}, which can be compared to the values found from the visible region broad line fluxes. Using flux-flux diagrams, the flux within the aperture from the underlying galaxy can often be determined without the need for model surface brightness profiles. In many galaxies it is apparent that here must be an additional constant contribution from warm dust.