Do you want to publish a course? Click here

Evolution of the Cluster X-ray Luminosity Function

128   0   0.0 ( 0 )
 Added by C. R. Mullis
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report measurements of the cluster X-ray luminosity function out to z=0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z~0.6 at luminosities less than a few times 10^44 ergs/s (0.5-2.0 keV). However, between 0.6 < z < 0.8 and at luminosities above 10^44 ergs/s, the observed volume densities are significantly lower than those of the present-day population. We quantify this cluster deficit using integrated number counts and a maximum-likelihood analysis of the observed luminosity-redshift distribution fit with a model luminosity function. The negative evolution signal is >3 sigma regardless of the adopted local luminosity function or cosmological framework. Our results and those from several other surveys independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z=0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently large mass aggregations at sufficiently early times in cosmological history where the Universe has yet to assemble these clusters to present-day volume densities.



rate research

Read More

124 - J. Patrick Henry 2001
Whether the X-ray luminosities of clusters of galaxies evolve has been a contentious issue for over ten years. However, the data available to address this issue have improved dramatically as cluster surveys from the ROSAT archive near completion. There are now three samples of nearby clusters and seven distant cluster samples. We present a uniform analysis of four of the distant cluster samples. Each exhibits highly statistically significant luminosity evolution. We combine three of these samples to measure the high redshift cluster X-ray luminosity function with good statistics that shows the nature of the evolution.
We compile one of the largest ever samples to probe the X-ray normal galaxy luminosity function and its evolution with cosmic time. In particular, we select 207 galaxies (106 late and 101 early-type systems) from the Chandra Deep Field North and South surveys, the Extended Chandra Deep Field South and the XBOOTES survey. We derive the luminosity function separately for the total (early+late), the early and the late-type samples using both a parametric maximum likelihood method, and a variant of the non-parametric 1/V_m method. Although the statistics is limited, we find that the total (early+late) galaxy sample is consistent with a Pure Luminosity evolution model where the luminosity evolves according to L(z) ~ (1+z)^2.2. The late-type systems appear to drive this trend while the early-type systems show much weaker evidence for evolution. We argue that the X-ray evolution of late-type systems is consistent with that of blue galaxies in the optical. In contrast there is a mismatch between the X-ray evolution of early-type systems and that of red galaxies at optical wavelengths.
138 - J. Aird , K. Nandra , E. S. Laird 2009
We present new observational determinations of the evolution of the 2-10keV X-ray luminosity function (XLF) of AGN. We utilise data from a number of surveys including both the 2Ms Chandra Deep Fields and the AEGIS-X 200ks survey, enabling accurate measurements of the evolution of the faint end of the XLF. We combine direct, hard X-ray selection and spectroscopic follow-up or photometric redshift estimates at z<1.2 with a rest-frame UV colour pre-selection approach at higher redshifts to avoid biases associated with catastrophic failure of the photometric redshifts. Only robust optical counterparts to X-ray sources are considered using a likelihood ratio matching technique. A Bayesian methodology is developed that considers redshift probability distributions, incorporates selection functions for our high redshift samples, and allows robust comparison of different evolutionary models. We find that the XLF retains the same shape at all redshifts, but undergoes strong luminosity evolution out to z~1, and an overall negative density evolution with increasing redshift, which thus dominates the evolution at earlier times. We do not find evidence that a Luminosity-Dependent Density Evolution, and the associated flattening of the faint-end slope, is required to describe the evolution of the XLF. We find significantly higher space densities of low-luminosity, high-redshift AGN than in prior studies, and a smaller shift in the peak of the number density to lower redshifts with decreasing luminosity. The total luminosity density of AGN peaks at z=1.2+/-0.1, but there is a mild decline to higher redshifts. We find >50% of black hole growth takes place at z>1, with around half in Lx<10^44 erg/s AGN.
The XMM-Newton survey of the Coma cluster of galaxies covers an area of 1.86 square degrees with a mosaic of 16 pointings and has a total useful integration time of 400 ksec. Detected X-ray sources with extent less than 10 were correlated with cataloged galaxies in the Coma cluster region. The redshift information, which is abundant in this region of the sky, allowed us to separate cluster members from background and foreground galaxies. For the background sources, we recover a typical LogN-LogS in the flux range 1.e-15 - 1.e-13 ergs/s/cm^2 in the 0.5-2.0 keV band. The X-ray emission from the cluster galaxies exhibits X-ray colors typical of thermal emission. The luminosities of Coma galaxies lie in the 1.e39-1.e41 ergs/s interval in the 0.5-2.0 keV band. The luminosity function of Coma galaxies reveals that their X-ray activity is suppressed with respect to the field by a factor of 5.6, indicating a lower level of X-ray emission for a given stellar mass.
The X-ray galaxy cluster sample from the REFLEX Cluster Survey, which covers the X-ray brightest galaxy clusters detected in the ROSAT All-Sky Survey in the southern sky, is used to construct the X-ray luminosity function of clusters in the local Universe. With 452 clusters detected above an X-ray flux-limit of 3 10^(-12) erg s^(-1) cm^(-2) in 4.24 sr of the sky, this sample is the most comprehensive X-ray cluster sample with a well documented selection function, providing the best current census of the local X-ray galaxy cluster population. In this paper we discuss the construction of the luminosity function, the effects of flux measurement errors and of variations with sample region and we compare the results to those from previous surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا