Do you want to publish a course? Click here

Gamma-Ray Bursts and Cosmology

128   0   0.0 ( 0 )
 Added by Jay Norris
 Publication date 2003
  fields Physics
and research's language is English
 Authors J. P. Norris




Ask ChatGPT about the research

The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z ~ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z ~ 1-4 with a tail to z ~ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.



rate research

Read More

Apparently, Gamma-Ray Bursts (GRBs) are all but standard candles. Their emission is collimated into a cone and the received flux depends on the cone aperture angle. Fortunately we can derive the aperture angle through an achromatic steepening of the lightcurve of the afterglow, and thus we can measure the true energetics of the prompt emission. Ghirlanda et al. (2004) found that this collimation-corrected energy correlates tightly with thefrequency at which most of the radiation of the prompt is emitted. Through this correlation we can infer the burst energy accurately enough for a cosmological use. Using the best known 15 GRBs we find very encouraging results that emphasize the cosmological GRB role. Probing the universe with high accuracy up to high redshifts, GRBs establish a new insight on the cosmic expanding acceleration history and accomplish the role of missing link between the Cosmic Microwave Background and type Ia supernovae, motivating the most optimistic hopes for what can be obtained from the bursts detected by SWIFT.
139 - B. McBreen , S. Foley , L. Hanlon 2010
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the ability of gamma-ray telescopes to quickly localise GRBs and the rapid follow-up observations with multi-wavelength instruments in space and on the ground. A total of 674 GRBs have been localised to date using the coded aperture masks of the four gamma-ray missions, BeppoSAX, HETE II, INTEGRAL and Swift. As a result there are now high quality observations of more than 100 GRBs, including afterglows and host galaxies, revealing the richness and progress in this field. The observations of GRBs cover more than 20 orders of magnitude in energy, from 10^-5 eV to 10^15 eV and also in two non-electromagnetic channels, neutrinos and gravitational waves. However the continuation of progress relies on space based instruments to detect and rapidly localise GRBs and distribute the coordinates.
(Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model. [...] We then turn to the special role of the baryon loading in discriminating between genuine short and long or fake short GRBs [...] We finally turn to the GRB-Supernova Time Sequence (GSTS) paradigm: the concept of induced gravitational collapse. [...] We then present some general conclusions.
Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a $p$-wave process than for $s$-wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to Standard Model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this dark gamma ray burst may be observable in CTA.
We discuss how measurements of the absorption of gamma-rays from GeV to TeV energies via pair production on the extragalactic background light (EBL) can probe important issues in galaxy formation. Semi-analytic models (SAMs) of galaxy formation, based on the flat LCDM hierarchical structure formation scenario, are used to make predictions of the EBL from 0.1 to 1000 microns. SAMs incorporate simplified physical treatments of the key processes of galaxy formation -- including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production. We will summarize SAM successes and failures in accounting for observations at low and high redshift. New ground- and space-based gamma ray telescopes will help to determine the EBL, and also help to explain its origin by constraining some of the most uncertain features of galaxy formation theory, including the stellar initial mass function, the history of star formation, and the reprocessing of light by dust. On a separate topic concerning gamma ray cosmology, we discuss a new theoretical insight into the distribution of dark matter at the center of the Milky Way, and its implications concerning the high energy gamma rays observed from the Galactic center.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا