(Abbrev.) We present high-resolution spectroscopy of the oxygen K-shell interstellar absorption edge in 7 X-ray binaries using the HETGS onboard Chandra. Using the brightest sources as templates, we found a best-fit model of 2 absorption edges and 5 Gaussian absorption lines. All of these features can be explained by the recent predictions of K-shell absorption from neutral and ionized atomic oxygen. We identify the K alpha and K beta absorption lines from neutral oxygen, as well as the S=3/2 absorption edge. The expected S=1/2 edge is not detected in these data due to overlap with instrumental features. We also identify the K alpha absorption lines from singly and doubly ionized oxygen. The OI K alpha absorption line is used as a benchmark with which to adjust the absolute wavelength scale for theoretical predictions of the absorption cross-sections. We find that shifts of 30-50 mA are required, consistent with differences previously noticed from comparisons of the theory with laboratory measurements. Significant oxygen features from dust or molecular components, as suggested in previous studies, are not required by our HETGS spectra. With these spectra, we can begin to measure the large-scale properties of the ISM. We place a limit on the velocity dispersion of the neutral lines of <200 km s^{-1}, consistent with measurements at other wavelengths. We also make the first measurement of the oxygen ionization fractions in the ISM. We constrain the interstellar ratio of OII/OI to ~0.1 and the ratio of OIII/OI to <0.1.