No Arabic abstract
In former papers we showed that during the decay of a neutron stars magnetic field under the influence of the Hall--drift, an unstable rise of small--scale field structures at the expense of the large--scale background field may happen. This linear stability analysis was based on the assumption of a uniform density throughout the neutron star crust, whereas in reality the density and all transport coefficients vary by many orders of magnitude. Here, we extend the investigation of the Hall--drift induced instability by considering realistic profiles of density and chemical composition, as well as background fields with more justified radial profiles. Two neutron star models are considered differing primarily in the assumption on the core matter equation of state. For their cooling history and radial profiles of density and composition we use known results to infer the conductivity profiles. These were fed into linear calculations of a dipolar field decay starting from various initial configurations. At different stages of the decay, snapshots of the magnetic fields at the equator were taken to yield background field profiles for the stability analysis. The main result is that the Hall instability may really occur in neutron star crusts. Characteristic growth times are in the order of lesssim 10^4 ... 10^6 yrs depending on cooling age and background field strength. The influence of the equation of state and of the initial field configuration is discussed.
X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion, and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is 2E12 g/cm^3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond 2E12 g/cm^3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A >= 102 nuclei, where the inner crust remains impure with an impurity parameter of Qimp~20 due to the N = 82 shell closure. In agreement with previous work we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.
In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which Ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are Hall equilibria, i.e., field configurations that are unaffected by Hall drift. Here, we address the crucial question of the stability of these equilibria through axially symmetric (2D) numerical simulations of Hall drift and Ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D-stability of a purely poloidal equilibrium, for which Ohmic dissipation makes the field evolve towards an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the Ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution towards an attractor, just as the purely poloidal one.
The crust of accreting neutron stars plays a central role in many different observational phenomena. In these stars, heavy elements produced by H-He burning in the rapid proton capture (rp-) process continually freeze to form new crust. In this paper, we explore the expected composition of the solid phase. We first demonstrate using molecular dynamics that two distinct types of chemical separation occur, depending on the composition of the rp-process ashes. We then calculate phase diagrams for three-component mixtures and use them to determine the allowed crust compositions. We show that, for the large range of atomic numbers produced in the rp-process ($Zsim 10$--$50$), the solid that forms has only a small number of available compositions. We conclude that accreting neutron star crusts should be polycrystalline, with domains of distinct composition. Our results motivate further work on the size of the compositional domains, and have implications for crust physics and accreting neutron star phenomenology.
With the first detections of binary neutron star mergers by gravitational-wave detectors, it proves timely to consider how the internal structure of neutron stars affects the way in which they can be asymmetrically deformed. Such deformations may leave measurable imprints on gravitational-wave signals and can be sourced through tidal interactions or the formation of mountains. We detail the formalism that describes fully-relativistic neutron star models with elastic crusts undergoing static perturbations. This formalism primes the problem for studies into a variety of mechanisms that can deform a neutron star. We present results for a barotropic equation of state and a realistic model for the elastic crust, which enables us to compute relevant quantities such as the tidal deformability parameter. We find that the inclusion of an elastic crust provides a very small correction to the tidal deformability. The results allow us to demonstrate when and where the crust starts to fail during a binary inspiral and we find that the majority of the crust will remain intact up until merger.
The ohmic decay of magnetic fields in the crusts of neutron stars is generally believed to be governed by Hall drift which leads to what is known as a Hall cascade. Here we show that helical and fractionally helical magnetic fields undergo strong inverse cascading like in magnetohydrodynamics (MHD), but the magnetic energy decays more slowly with time $t$: $propto t^{-2/5}$ instead of $propto t^{-2/3}$ in MHD. Even for a nonhelical magnetic field there is a certain degree of inverse cascading for sufficiently strong magnetic fields. The inertial range scaling with wavenumber $k$ is compatible with earlier findings for the forced Hall cascade, i.e., proportional to $k^{-7/3}$, but in the decaying cases, the subinertial range spectrum steepens to a novel $k^5$ slope instead of the $k^4$ slope in MHD. The energy of the large-scale magnetic field can increase quadratically in time through inverse cascading. For helical fields, the energy dissipation is found to be inversely proportional to the large-scale magnetic field and proportional to the fifth power of the root-mean square (rms) magnetic field. For neutron star conditions with an rms magnetic field of a few times $10^{14},$G, the large-scale magnetic field might only be $10^{11},$G, while still producing magnetic dissipation of $10^{33},$erg$,$s$^{-1}$ for thousands of years, which could manifest itself through X-ray emission. Finally, it is shown that the conclusions from local unstratified models agree rather well with those from stratified models with boundaries.