No Arabic abstract
Moderate and high-resolution measurements (R ~ 40,000) of interstellar resonance lines of D I, C II, N I, O I, Al II, and Si II (light ions) are presented for all available observed targets located within 100 pc which also have high-resolution observations of interstellar Fe II or Mg II (heavy ions) lines. All spectra were obtained with the Goddard High Resolution Spectrograph or the Space Telescope Imaging Spectrograph instruments aboard the Hubble Space Telescope. Currently, there are 41 sightlines to targets within 100 pc with observations that include a heavy ion at high resolution and at least one light ion at moderate or high resolution. We present new measurements of light ions along 33 of these sightlines, and collect from the literature results for the remaining sightlines that have already been analyzed. We greatly increase the number of sightlines with useful LISM absorption line measurements of light ions by using knowledge of the kinematic structure along a line of sight obtained from high resolution observations of intrinsically narrow absorption lines, such as Fe II and Mg II. Because high resolution observations of heavy ions are critical for understanding the kinematic structure of local absorbers along the line of sight, we include 18 new measurements of Fe II and Mg II in an appendix. We present a statistical analysis of the LISM absorption measurements, which provides an overview of some physical characteristics of warm clouds in the LISM, including temperature and turbulent velocity. This complete collection and reduction of all available LISM absorption measurements provides an important database for studying the structure of nearby warm clouds, including ionization, abundances, and depletions.
Far infrared fine structure line data from the ISO archive have been extracted for several hundred YSOs and their outflows, including molecular (CO) outflows, optical jets and Herbig-Haro (HH) objects. Given the importance of these lines to astrophysics, their excitation and transfer ought to be investigated in detail and, at this stage, the reliability of the diagnostic power of the fine structure transitions of O I and C II has been examined. Several issues, such as the extremely small intensity ratios of the oxygen 63 micron to 145 micron lines, are still awaiting an explanation. It is demonstrated that, in interstellar cloud conditions, the 145 micron line is prone to masing, but that this effect is likely an insufficient cause of the line ratio anomaly observed from cold dark clouds. Very optically thick emission could in principle also account for this, but would need similar, prohibitively high column densities and must therefore be abondoned as a viable explanation. One is left with [O I] 63 micron self absorption by cold and tenuous foreground gas, as has been advocated for distant luminous sources. Recent observations with the submillimeter observatory Odin support this scenario also in the case of nearby dark molecular clouds. On the basis of this large statistical material we are led to conclude that in star forming regions, the [O I] and [C II] lines generally have only limited diagnostic value.
In this paper, mid-wave infrared photodetection based on an InAs/GaSb type-II superlattice p-i-n photodetector grown directly on Si substrate is demonstrated and characterized. Excitation power dependence on integrated intensity from the photoluminescence measurements reveals a power coefficient of P~I0.74, indicating that defects related process is playing an important role in the predominant recombination channel for photogenerated carriers. At 70 K, the device exhibits a dark current density of 2.3 A/cm2 under -0.1 V bias. Arrhenius analysis of dark current shows activation energies much less than half of the active layer bandgap, which suggests that the device is mainly limited by surface leakage and defect-assisted tunneling, consistent with the photoluminescence analysis. The detector shows 50% cutoff wavelength at ~5.5 um at 70 K under bias of -0.1 V. The corresponding peak responsivity and specific detectivity are 1.2 A/W and 1.3*10e9 cm*Hz1/2/W, respectively. Based on these optoelectronics characterization results, reduction of defects by optimizing the III/V-Si interface, and suppression of surface leakage channels are argued to be the main factors for performance improvement in this Si-based T2SL detector towards low cost, large-format MWIR detection system on Si photonics platform.
The circumnuclear region of M31, consisting of multiphase interstellar medium, provides a close-up view of the interaction of the central supermassive black hole and surrounding materials. Far-infrared (FIR) line structure lines and their flux ratios can be used as diagnostics of physical properties of the neutral gas in this region. Here we present the first FIR spectroscopic mapping of the circumnuclear region of M31 in [C ii] 158 um, [O i] 63 um and [O iii] 88 um lines with the Herschel Space Observatory, covering a ~500 x 500 pc (2 x 2) field. Significant emissions of all three lines are detected along the so-called nuclear spiral across the central kpc of M31. The velocity field under a spatial resolution of ~50 pc of the three lines are in broad consistency and also consistent with previous CO(3-2) line observations in the central region. Combined with existing [C ii] and CO(3-2) observations of five other fields targeting on the disk, we derived the radial distribution of [C ii]/CO(3-2) flux ratio, and found that this ratio is higher in the center than the disk, indicating a low gas density and strong radiation field in the central region. We also found that the [C ii]/FIR ratio in the central region is 5.4 (+-0.8) x 10^-3, which exhibits an increasing trend with the galactocentric radius, suggesting an increasing contribution from old stellar population to dust heating towards the center.
The Chamaeleon star-forming region has been extensively studied in the last decades. However, most studies have been confined to the densest parts of the clouds. In a previous paper, we analysed the kinematical properties of the spectroscopically confirmed population of the Chamaeleon I and II clouds. We now report on a search for new kinematical candidate members to the Chamaeleon I and II moving groups using available information from public databases and catalogues. Our candidates were initially selected in an area of 3 deg around each cloud on the basis of proper motions and colours from the UCAC4 Catalog. The SEDs of the objects were constructed using photometry retrieved from the Virtual Observatory and other resources, and fitted to models of stellar photospheres to derive effective temperatures, gravity values, and luminosities. Masses and ages were estimated by comparison with theoretical evolutionary tracks in a Hertzprung-Russell diagram. We have identified 51 and 14 candidate members to the Chamaeleon I and II moving groups, respectively, of which 17 and 1, respectively, are classified as probable young stars (ages < 20 Myr) according to our analysis. Another object in Chamaeleon I located slightly above the 1 Myr isochrone is classified as a possible young star. All these objects are diskless stars with masses in the range 0.3M-1.4MSun, and ages consistent with those reported for the corresponding confirmed members. They tend to be located at the boundaries of or outside the dark clouds, preferably to the north-east and south-east in the case of Chamaeleon I, and to the north-east in the case of Chamaeleon II. We conclude that the kinematical population of Chamaeleon I and II could be larger and spread over a larger area of the sky than suggested by previous studies.
Phase RNum{2} of the LAMOST-{sl Kepler/K}2 survey (LK-MRS), initiated in 2018, aims at collecting medium-resolution spectra ($Rsim7,500$; hereafter MRS) for more than $50,000$ stars with multiple visits ($sim60$ epochs) over a period of 5 years (2018 September to 2023 June). We selected 20 footprints distributed across the {sl Kepler} field and six {sl K}2 campaigns, with each plate containing a number of stars ranging from $sim2,000$ to $sim 3,000$. During the first year of observations, the LK-MRS has already collected $sim280,000$ and $sim369,000$ high-quality spectra in the blue and red wavelength range, respectively. The atmospheric parameters and radial velocities for $sim259,000$ spectra of $21,053$ targets were successfully calculated by the LASP pipeline. The internal uncertainties for the effective temperature, surface gravity, metallicity, and radial velocity are found to be $100$,K, $0.15$,dex, $0.09$,dex, and $1.00$,km,s$^{-1}$, respectively. We found $14,997$, $20,091$, and $1,514$ stars in common with the targets from the LAMOST low-resolution survey (LRS), GAIA and APOGEE, respectively, corresponding to a fraction of $sim70%$, $sim95%$ and $sim7.2%$. In general, the parameters derived from LK-MRS spectra are consistent with those obtained from the LRS and APOGEE spectra, but the scatter increases as the surface gravity decreases when comparing with the measurements from APOGEE. A large discrepancy is found with the GAIA values of the effective temperature. The comparisons of radial velocities of LK-MRS to GAIA and LK-MRS to APOGEE nearly follow an Gaussian distribution with a mean $musim1.10$ and $0.73$,km,s$^{-1}$, respectively.