No Arabic abstract
We present our ELODIE radial-velocity measurements of HD 74156 and 14 Her (HD 145675). These stars exhibit low-amplitude radial-velocity variations induced by the presence of low-mass companions. The radial-velocity data of HD 74156 reveal the presence of two planetary companions: a 1.86 M_Jup planet on a 51.64--d orbit and a 6.2 M_Jup planet on a long-period (5.5 yr) orbit. Both orbits are fairly eccentric (e=0.64 and 0.58). The 4.7M_Jup companion to HD 145675 has a long period (4.9 yr) and a moderately eccentric orbit (e=0.34). We detect an additional linear radial-velocity trend superimposed to the periodic signal for this star. We also compute updated orbital solutions for HD 209458 and 51 Peg (HD 217014). Finally, we present our ELODIE radial-velocity data and orbital solutions for 5 stars known to host planetary companions: Ups And (HD 9826), 55 Cnc (HD 75732), 47 UMa (HD 95128), 70Vir (HD 117176) and HD 187123. We confirm the previously published orbital solutions for Ups And, 70 Vir and HD 187123. Our data are not sufficient for fully confirming the orbital solutions for 55 Cnc and 47UMa.
Precise radial-velocity observations at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spectrograph have been undertaken since 1994. In addition to several discoveries described elsewhere, including and following that of 51 Peg b, they reveal new sub-stellar companions with essentially moderate to long periods. We report here about such companions orbiting five solar-type stars (HD 8574, HD 23596, HD 33636, HD 50554, HD 106252) and one sub-giant star (HD 190228). The companion of HD 8574 has an intermediate period of 227.55 days and a semi--major axis of 0.77 AU. All other companions have long periods, exceeding 3 years, and consequently their semi-major axes are around or above 2 AU. The detected companions have minimum masses m2sini ranging from slightly more than 2 M_Jup to 10.6 M_Jup. These additional objects reinforce the conclusion that most planetary companions have masses lower than 5 M_Jup but with a tail of the mass distribution going up above 15 M_Jup. The orbits are all eccentric and 4 out of 6 have an eccentricity of the order of 0.5. Four stars exhibit solar metallicity, one is metal-rich and one metal-poor. With 6 new extra-solar planet candidates discovered, increasing their total known to-date number to 115, the ELODIE Planet Search Survey yield is currently 18. We emphasize that 3 out of the 6 companions could in principle be resolved by diffraction-limited imaging on 8m-class telescopes depending on the achievable contrast, and therefore be primary targets for first attempts of extra-solar planet direct imaging.
Aims:We aim to significantly increase the number of detected extra-solar planets in a magnitude-limited sample to improve our knowledge of their orbital element distributions and thus obtain better constraints for planet-formation models. Methods: Radial-velocity data were taken at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spectrograph. Results: We report the presence of a planet orbiting HD 196885 A, with an orbital period of 1349 days. This star was previously suggested to host a 386 -day planet, but we cannot confirm its existence. We also detect the presence of a stellar companion, HD 196885 B, and give some constraints on its orbit.
We present radial-velocity measurements obtained with the ELODIE and AFOE spectrographs for GJ 777 A (HD 190360), a metal-rich ([Fe/H]=0.25) nearby (d=15.9 pc) star in a stellar binary system. A long-period low radial-velocity amplitude variation is detected revealing the presence of a Jovian planetary companion. Some of the orbital elements remain weakly constrained because of the smallness of the signal compared to our instrumental precision. The detailed orbital shape is therefore not well established. We present our best fitted orbital solution: an eccentric (e=0.48) 10.7--year orbit. The minimum mass of the companion is 1.33 M_Jup.
Long-period brown dwarf companions detected in radial velocity surveys are important targets for direct imaging and astrometry to calibrate the mass-luminosity relation of substellar objects. Through a 20-year radial velocity monitoring of solar-type stars that began with ELODIE and was extended with SOPHIE spectrographs, giant exoplanets and brown dwarfs with orbital periods longer than ten years are discovered. We report the detection of five new potential brown dwarfs with minimum masses between 32 and 83 Jupiter mass orbiting solar-type stars with periods longer than ten years. An upper mass limit of these companions is provided using astrometric Hipparcos data, high-angular resolution imaging made with PUEO, and a deep analysis of the cross-correlation function of the main stellar spectra to search for blend effects or faint secondary components. These objects double the number of known brown dwarf companions with orbital periods longer than ten years and reinforce the conclusion that the occurrence of such objects increases with orbital separation. With a projected separation larger than 100 mas, all these brown dwarf candidates are appropriate targets for high-contrast and high angular resolution imaging.
We present radial-velocity measurements obtained in a programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD150706 and HD222155 in 16.1 and 10.9 yr at 6.7 (+4.0,-1.4) and 5.1(+0.6,-0.7) AU and to have minimum masses of 2.71 (+1.44,-0.66) and 1.90 (+0.67,-0.53) M_Jup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD154345b and HD89307b, and publish the first reliable orbit for HD24040b. This last companion has a minimum mass of 4.01 +/- 0.49 M_Jup orbiting its star in 10.0 yr at 4.92 +/- 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD24040 system. With a surrounding dust debris disk, HD150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. HD222155 is an inactive G2V star. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment, consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up to constrain the system parameters and for higher precision radial-velocity to search for lower mass planets, aiming to find a Solar System twin.