No Arabic abstract
Archival XMM-Newton data on the nearby Seyfert galaxy NGC 4051, taken in relatively high and low flux states, offer a unique opportunity to explore the complexity of its X-ray spectrum. We find the hard X-ray band to be significantly affected by reflection from cold matter, which can also explain a non-varying, narrow Fe K fluorescent line. We interpret major differences between the high and low flux hard X-ray spectra in terms of the varying ionisation (opacity) of a substantial column of outflowing gas. An emission line spectrum in the low flux state indicates an extended region of photoionised gas. A high velocity, highly ionised outflow seen in the high state spectrum can replenish the gas in the extended emission region over ~10^3 years, while having sufficient kinetic energy to contribute significantly to the hard X-ray continuum.
The Narrow Line Seyfert 1 galaxy NGC 4051 was observed in one of its prolonged low-lux states by XMM-Newton in November 2002. Here we present the results of an analysis of EPIC-pn data obtained during the observation. Within the low state, the source shows complex spectral variability which cannot easily be explained by any simple model. However, by making a `flux-flux plot which combines the low state data with data obtained during a normal flux state, we demonstrate that the extremely hard spectrum observed above 2 keV results from a continuation of the spectral variability seen in the normal state, which is caused by spectral pivoting of the power-law continuum. The pivoting power-law appears to be attached to a Comptonised thermal component of variable flux (blackbody temperature kT~0.1 keV, consistent with the small black hole mass in NGC 4051) which dominates the soft X-ray band in the low state, and is probably the source of seed photons for Comptonisation. Additional constant thermal and reflection components, together with absorption by ionised gas, seem to be required to complete the picture and explain the complex X-ray spectral variability seen in the low state of NGC 4051.
We study the X-ray spectral variability of the Narrow Line Seyfert 1 galaxy NGC 4051 as observed during two XMM-Newton observations. The data show evidence for a neutral and constant reflection component and for constant emission from photoionized gas, which are included in all spectral models. The nuclear emission can be modelled both in terms of a ``standard model (pivoting power law plus a black body component for the soft excess) and of a two--component one (power law plus ionized reflection from the accretion disc). The standard model results indicate that the soft excess does not follow the standard black body law. Moreover, although the spectral slope is correlated with flux, which is consistent with spectral pivoting, the hardest photon indexes are so flat as to require rather unusual scenarios. These problems can be solved in terms of the two-component model in which the soft excess is not thermal, but due to the ionized reflection component. The variability of the reflection component from the inner disc closely follows the predictions of the light bending model, suggesting that most of the primary nuclear emission is produced in the very innermost regions, only a few gravitational radii from the central black hole. (abridged)
This paper presents the results of a dense and intensive X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051 carried out in 2000. Results of the optical analysis are consistent with previous measurements. The amplitude of optical emission line variability is a factor of two larger than that of the underlying optical continuum, but part or all of the difference can be due to host-galaxy starlight contamination or due to the lines being driven by the unseen UV continuum, which is more variable than the optical continuum. We measured the lag between optical lines and continuum and found a lower, more accurate broad line region size of 3.0+-1.5 light days in this object. The implied black hole mass is M_BH=5(+6,-3)x10^5 M_sun; this is the lowest mass found, so far, for an active nucleus. We find significant evidence for an X-ray-optical (XO) correlation with a peak lag of about <1 day, although the centroid of the asymmetric correlation function reveals that part of the optical flux varies in advance of the X-ray flux by 2.4+-1.0 days. This complex XO correlation is explained as a possible combination of X-ray reprocessing and perturbations propagating from the outer (optically emitting) parts of the accretion disc into its inner (X-ray emitting) region.
We present intensive quasi-simultaneous X-ray and radio monitoring of the narrow line Seyfert 1 galaxy NGC 4051, over a 16 month period in 2000-2001. Observations were made with the Rossi Timing X-ray Explorer (RXTE) and the Very Large Array (VLA) at 8.4 and 4.8 GHz. In the X-ray band NGC 4051 behaves much like a Galactic black hole binary (GBH) system in a `soft-state. In such systems, there has so far been no firm evidence for an active, radio-emitting jet like those found in `hard state GBHs. VLBI observations of NGC 4051 show three co-linear compact components. This structure resembles the core and outer hot spots seen in powerful, jet-dominated, extragalactic radio sources and suggests the existence of a weak jet. Radio monitoring of the core of NGC 4051 is complicated by the presence of surrounding extended emission and by the changing array configurations of the VLA. Only in the A configuration is the core reasonably resolved. We have carefully removed the contaminations of the core by extended emission in the various arrays. The resulting lightcurve shows no sign of large amplitude variability (i.e. factor 50 %) over the 16 month period. Within the most sensitive configuration (A array) we see marginal evidence for radio core variability of ~25% (~0.12 mJy at 8.4GHz) on a 2-week timescale, correlated with X-ray variations. Even if the radio variations in NGC 4051 are real, the percentage variability is much less than in the X-ray band. Within the B configuration observations, where sensitivity is reduced, there is no sign of correlated X-ray/radio variability. The lack of radio variability in NGC 4051, which we commonly see in `hard state GBHs, may be explained by orientation effects. Another possibility is that the radio emission arises from the X-ray corona, although the linear structure of the compact radio components here is hard to explain.
On 9-11 May 1998, the highly-variable, low luminosity Seyfert 1 galaxy NGC4051 was observed in an unusual low flux state by BeppoSAX (Guainazzi et al. 1998) RXTE and EUVE. We present fits of the 4-15 keV RXTE spectrum and BeppoSAX MECS spectrum obtained during this observation, which are consistent with the interpretation that the source had switched off, leaving only the spectrum of pure reflection from distant cold matter. We place this result in context by showing the X-ray lightcurve of NGC4051 obtained by our RXTE monitoring campaign over the past two and a half years, which shows that the low state lasted for ~150 days before the May observations (implying that the reflecting material is > 10^17 cm from the continuum source) and forms part of a lightcurve showing distinct variations in long-term average flux over timescales > months. We show that the long-timescale component to X-ray variability is intrinsic to the primary continuum and is probably distinct from the variability at shorter timescales, possibly associated with variations in the accretion flow of matter onto the central black hole. As the source approaches the low state, the variability process becomes non-linear. NGC4051 may represent a microcosm of all X-ray variability in radio quiet active galactic nuclei (AGNs), displaying in a few years a variety of flux states and variability properties which more luminous AGNs may pass through on timescales of decades to thousands of years.