Do you want to publish a course? Click here

X-ray Evidence for a Buried Active Galactic Nucleus in UGC 5101

50   0   0.0 ( 0 )
 Added by Masatoshi Imanishi
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray observations of the ultraluminous infrared galaxy, UGC 5101, thought to contain a buried active galactic nucleus (AGN) based on observations in other wavebands. We detected an absorbed hard component at >3 keV, as well as soft emission in the energy range 0.5-2 keV. The soft X-ray component, possibly due to a modestly dust-obscured, extended starburst, has an absorption-corrected 0.5-2 keV X-ray luminosity of LX(0.5-2 keV) = 1.2 * 10^41 ergs s^-1. The 0.5-2 keV X-ray to infrared luminosity ratio is a factor of 5 lower than typical values for a normal starburst, suggesting that this extended starburst is unlikely to be energetically dominant in UGC 5101. The most plausible origin of the absorbed hard component is the putative buried AGN. The 6.4 keV Fe K alpha emission line has a modest equivalent width (400 eV), suggesting that this hard component is direct emission from the AGN, rather than a scattered component. The absorption-corrected 2-10 keV X-ray luminosity of the buried AGN was estimated to be LX(2-10 keV) = 5 * 10^42 ergs s^-1. The intrinsic 2-10 keV X-ray luminosity and the 2-10 keV X-ray to infrared luminosity ratio are both comparable to values measured for Mrk 463, a Seyfert-2 galaxy of similar infrared luminosity.



rate research

Read More

We report the broadband X-ray spectra of the ultra-luminous infrared galaxy (ULIRG) UGC 5101 in the 0.25-100 keV band observed with Swift/Burst Alert Telescope (BAT), NuSTAR, Suzaku, XMM-Newton, and Chandra. A Compton-thick AGN obscured with a hydrogen column density of $approx 1.3times10^{24}$ cm$^{-2}$ is detected above 10 keV. A spectral fit with a numerical torus model favors a large half opening angle of the torus, $>41$ degrees, suggesting that the covering fraction of material heavily obscuring the X-ray source is moderate. The intrinsic 2-10 keV luminosity is determined to be $approx 1.4times 10^{43}$ erg s$^{-1}$, which is $approx$2.5 times larger than the previous estimate using only data below 10 keV with a simple spectral model. We find that UGC 5101 shows the ratio between the [O IV] 26 $mu$m line and 2-10 keV luminosities similar to those of normal Seyfert galaxies, along with other ULIRGs observed with NuSTAR, indicating that a significant portion of local ULIRGs are not really X-ray faint with respect to the flux of forbidden lines originating from the narrow line region (NLR). We propose a possible scenario that (1) the AGN in UGC 5101 is surrounded not only by Compton-thick matter located close to the equatorial plane but also by Compton-thin ($N_mathrm{H} sim 10^{21}$ cm$^{-2}$) matter in the torus-hole region and (2) it is accreting at a high Eddington rate with a steep UV to X-ray spectral energy distribution. Nevertheless, we argue that AGNs in many ULIRGs do not look extraordinary (i.e., extremely X-ray faint), as suggested by recent works, compared with normal Seyferts.
We present the drastic transformation of the X-ray properties of the active galactic nucleus 1ES 1927+654, following a changing-look event. After the optical/UV outburst the power-law component, produced in the X-ray corona, disappeared, and the spectrum of 1ES 1927+65 instead became dominated by a blackbody component ($kTsim 80-120$ eV). This implies that the X-ray corona, ubiquitously found in AGN, was destroyed in the event. Our dense $sim 450$ day long X-ray monitoring shows that the source is extremely variable in the X-ray band. On long time scales the source varies up to $sim 4$ dex in $sim 100$ days, while on short timescales up to $sim2$ dex in $sim 8$ hours. The luminosity of the source is found to first show a strong dip down to $sim 10^{40}rm,erg,s^{-1}$, and then a constant increase in luminosity to levels exceeding the pre-outburst level $gtrsim $300 days after the optical event detection, rising up asymptotically to $sim 2times10^{44}rm,erg,s^{-1}$. As the X-ray luminosity of the source increases, the X-ray corona is recreated, and a very steep power-law component ($Gammasimeq 3$) reappears, and dominates the emission for 0.3-2 keV luminosities $gtrsim 10^{43.7}rm,erg,s^{-1}$, $sim 300$ days after the beginning of the event. We discuss possible origins of this event, and speculate that our observations could be explained by the interaction between the accretion flow and debris from a tidally disrupted star. Our results show that changing-look events can be associated with dramatic and rapid transformations of the innermost regions of accreting SMBHs.
112 - X. W. Shu , Y. Q. Xue , D. Z. Liu 2018
We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the source is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (~0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44 erg/s, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.
263 - J. R. Song 2020
RX J1301.9+2747 is an ultrasoft active galactic nucleus (AGN) with unusual X-ray variability that is characterized by a long quiescent state and a short-lived flare state. The X-ray flares are found to recur quasi-periodically on a timescale of 13-20 ks. Here, we report the analysis of the light curve in the quiescent state from two XMM observations spanning 18.5 years, along with the discovery of a possible quasi-periodic X-ray oscillation (QPO) with a period of ~1500s. The QPO is detected at the same frequency in the two independent observations, with a combined significance of >99.89%. The QPO is in agreement with the relation between frequency and black hole mass (M_BH) that has been reported in previous works for AGNs and Galactic black hole X-ray binaries (XRBs). The QPO frequency is stable over almost two decades, suggesting that it may correspond to the high-frequency type found in XRBs and originates, perhaps, from a certain disk resonance mode. In the 3:2 twin-frequency resonance model, our best estimate on the M_BH range implies that a maximal black hole spin can be ruled out. We find that all ultrasoft AGNs reported so far display quasi-periodicities in the X-ray emission, suggesting a possible link on the part of the extreme variability phenomenon to the ultrasoft X-ray component. This indicates that ultrasoft AGNs could be the most promising candidates in future searches for X-ray periodicities.
We present a large sample of infrared-luminous candidate active galactic nuclei (AGNs) that lack X-ray detections in Chandra, XMM-Newton, and NuSTAR fields. We selected all optically detected SDSS sources with redshift measurements, combined additional broadband photometry from WISE, UKIDSS, 2MASS, and GALEX, and modeled the spectral energy distributions (SEDs) of our sample sources. We parameterize nuclear obscuration in our SEDs with $E(B!-!V)_{text{AGN}}$ and uncover thousands of powerful obscured AGNs that lack X-ray counterparts, many of which are identified as AGN candidates based on straightforward WISE photometric criteria. Using the observed luminosity correlation between restframe 2-10 keV ($L_{text{X}}$) and restframe AGN 6 $mu{text{m}}$ ($L_{text{MIR}}$), we estimate the intrinsic X-ray luminosities of our sample sources and combine these data with flux limits from X-ray catalogs to determine lower limits on nuclear obscuration. Using the ratio of intrinsic-to-observed X-ray luminosity ($R_{L_{text{X}}}$), we find a significant fraction of sources with column densities approaching $N_{text{H}}>$ 10$^{text{24}}$ cm$^{-{text{2}}}$, suggesting that multiwavelength observations are necessary to account for the population of heavily obscured AGNs. We simulate the underlying $N_{text{H}}$ distribution for the X-ray non-detected sources in our sample through survival analysis, and confirm the presence of AGN activity via X-ray stacking. Our results point to a considerable population of extremely obscured AGNs undetected by current X-ray observatories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا