Do you want to publish a course? Click here

MAXIMA: A Balloon-Borne Cosmic Microwave Background Anisotropy Experiment

345   0   0.0 ( 0 )
 Added by Celeste Winant
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the Millimeter wave Anisotropy eXperiment IMaging Array (MAXIMA), a balloon-borne experiment designed to measure the temperature anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 10 to 5 degrees . MAXIMA mapped the CMB using 16 bolometric detectors in spectral bands centered at 150 GHz, 240 GHz, and 410 GHz, with 10 resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy was ~40 microK/rt(sec). Systematic parasitic contributions were minimized by using four uncorrelated spatial modulations, thorough crosslinking, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Pointing reconstruction was accurate to 1, and absolute calibration was better than 4%. Two MAXIMA flights with more than 8.5 hours of CMB observations have mapped a total of 300 deg^2 of the sky in regions of negligible known foreground emission. MAXIMA results have been released in previous publications. MAXIMA maps, power spectra and correlation matrices are publicly available at http://cosmology.berkeley.edu/maxima



rate research

Read More

We report on the characteristics and design details of the Medium Scale Anisotropy Measurement (MSAM), a millimeter-wave, balloon-borne telescope that has been used to observe anisotropy in the Cosmic Microwave Background Radiation (CMBR) on 0fdg5 angular scales. The gondola is capable of determining and maintaining absolute orientation to a few arcminutes during a one-night flight. Emphasis is placed on the optical and pointing performance as well as the weight and power budgets. We also discuss the total balloon/gondola mechanical system. The pendulation from this system is a ubiquitous perturbation on the pointing system. A detailed understanding in these areas is needed for developing the next generation of balloon-borne instruments.
We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization anisotropy of the cosmic microwave background radiation (CMB) on angular scales of 10 arcmin to 2 degrees. MAXIPOL is the first CMB experiment to collect data with a polarimeter that utilizes a rotating half-wave plate and fixed wire-grid polarizer. We present the instrument design, elaborate on the polarimeter strategy and show the instrument performance during flight with some time domain data. Our primary data set was collected during a 26 hour turnaround flight that was launched from the National Scientific Ballooning Facility in Ft. Sumner, New Mexico in May 2003. During this flight five regions of the sky were mapped. Data analysis is in progress.
We cross-correlate the cosmic microwave background temperature anisotropy maps from the WMAP, MAXIMA-I, and MAXIMA-II experiments. We use the cross-spectrum, which is the spherical harmonic transform of the angular two-point correlation function, to quantify the correlation as a function of angular scale. We find that the three possible pairs of cross-spectra are in close agreement with each other and with the power spectra of the individual maps. The probability that there is no correlation between the maps is smaller than 1 * 10^(-8). We also calculate power spectra for maps made of differences between pairs of maps, and show that they are consistent with no signal. The results conclusively show that the three experiments not only display the same statistical properties of the CMB anisotropy, but also detect the same features wherever the observed sky areas overlap. We conclude that the contribution of systematic errors to these maps is negligible and that MAXIMA and WMAP have accurately mapped the cosmic microwave background anisotropy.
We describe BOOMERANG; a balloon-borne microwave telescope designed to map the Cosmic Microwave Background (CMB) at a resolution of 10 from the Long Duration Balloon (LDB) platform. The millimeter-wave receiver employs new technology in bolometers, readout electronics, cold re-imaging optics, millimeter-wave filters, and cryogenics to obtain high sensitivity to CMB anisotropy. Sixteen detectors observe in 4 spectral bands centered at 90, 150, 240 and 410 GHz. The wide frequency coverage, the long duration flight, the optical design and the observing strategy provide strong rejection of systematic effects. We report the flight performance of the instrument during a 10.5 day stratospheric balloon flight launched from McMurdo Station, Antarctica that mapped ~2000 square degrees of the sky.
178 - A.T. Lee , P. Ade , A. Balbi 2001
We extend the analysis of the MAXIMA-1 cosmic microwave background (CMB) data to smaller angular scales. MAXIMA, a bolometric balloon experiment, mapped a 124 deg$^2$ region of the sky with 10arcmin resolution at frequencies of 150, 240 and 410 GHz during its first flight. The original analysis, which covered the multipole range $36 leq ell leq 785$, is extended to $ell = 1235$ using data from three 150 GHz photometers in the fully cross-linked central 60 deg$^2$ of the map. The main improvement over the original analysis is the use of 3arcmin square pixels in the calculation of the map. The new analysis is consistent with the original for $ell < 785$. For $ell > 785$, where inflationary models predict a third acoustic peak, the new analysis shows power with an amplitude of $56 pm 7$ microk at $ell simeq 850$ in excess to the average power of $42 pm 3$ microk in the range $441 < ell < 785$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا