A new upper limit on the reflected starlight from Tau Bootis b


Abstract in English

Using improved doppler tomographic signal-analysis techniques we have carried out a deep search for starlight reflected from the giant planet orbiting the star Tau Bootis. We combined echelle spectra secured at the 4.2 m William Herschel telescope in 1998 and 1999 (which yielded a tentative detection of a reflected starlight component from the orbiting companion) with new data obtained in 2000 (which failed to confirm the detection). The combined dataset comprises 893 high resolution spectra with a total integration time of 75 hr 32 min spanning 17 nights. We establish an upper limit on the planets geometric albedo p<0.39 (at the 99.9 % significance level) at the most probable orbital inclination i=36 degrees, assuming a grey albedo, a Venus-like phase function and a planetary radius R_p=1.2 R_Jup. We are able to rule out some combinations of the predicted planetary radius and atmospheric albedo models with high, reflective cloud decks. Although a weak candidate signal appears near to the most probable radial velocity amplitude, its statistical significance is insufficient for us to claim a detection with any confidence.

Download