The X-ray, optical and radio evolution of the GRB030329 afterglow and the associated SN2003dh


Abstract in English

Extensive X-ray, optical and radio observations of the bright afterglow of the Gamma Ray Burst GRB 030329 are used to construct the multi-frequency evolution of the event. The data are fitted using the standard fireball shock model to provide estimates of the initial energy, epsilon = 6.8 x 10^52 ergs sr^-1, the density of the ambient medium, n_0 = 1 cm^-3, the electron and magnetic energy density fractions, epsilon_e = 0.24 & epsilon_B = 0.0017, the power law index of the relativistic electron spectrum, p = 2.25, and the opening angle of the jet, theta_j = 3 degrees. Deviations from the standard model seen in the optical and radio are most likely attributable to the concurrent hypernova SN2003dh. Peaks at 0.23 and 1.7 days in the R-band are much brighter than expected from a standard SN, and there is a large radio excess over the expected afterglow flux for t>2 days. No deviation from the best-fit afterglow model is seen in the X-ray decline, indicating that the excess optical and radio flux from 1-5 days arises from a later injection of slower electrons by the central engine.

Download