We perform a weak lensing analysis on a previously reported dark-lens candidate on STIS Parallel data (Miralles et al. 2002). New VLT-data indicate that the reported signal originates from a small number of galaxies tangentially aligned towards the center of the STIS field but no signature for an extended mass distribution is found. We argue that we should be able to detect a massive cluster ($Mgeq 3.2times 10^{14}M_{odot}$) through its lensing signal up to a redshift of $zapprox 0.6$ with our data. Also the double image hypothesis of two galaxies with very similar morphologies in the STIS data is ruled out with colour information.
We report the serendipituous discovery of a conspicuous alignment of galaxies in a field obtained through the STIS Parallel Shear Survey. This project collects randomly distributed 50 x 50 fields to investigate the cosmic shear effect on this scale. Analyzing the parallel observations having the Seyfert galaxy NGC625 as primary target, we recognized over the whole field of view a strong apparent tangential alignment of galaxy ellipticities towards the image center. The field shows several arclet-like features typical for images of massive galaxy clusters, but no obvious over-density of bright foreground galaxies. We also find a multiple image candidate. On the basis of the possible strong and weak lensing effect within the data, we discuss whether this could be compatible with a massive halo with no clear optical counterpart.
We study the estimators of various second-order weak lensing statistics such as the shear correlation functions xi_pm and the aperture mass dispersion <M_ap^2> which can directly be constructed from weak lensing shear maps. We compare the efficiency with which these estimators can be used to constrain cosmological parameters. To this end we introduce the Karhunen-Loeve (KL) eigenmode analysis techniques for weak lensing surveys. These tools are shown to be very effective as a diagnostics for optimising survey strategies. The usefulness of these tools to study the effect of angular binning, the depth and width of the survey and noise contributions due to intrinsic ellipticities and number density of source galaxies on the estimation of cosmological parameters is demonstrated. Results from independent analysis of various parameters and joint estimations are compared. We also study how degeneracies among various cosmological and survey parameters affect the eigenmodes associated with these parameters.
Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few $times 10^{-2}$. The coupling parameter $xi$ is strongly degenerate with the cold dark matter energy density $Omega_{c}h^2$ and the Hubble constant $H_0$.These degeneracies may cause important biases in the cosmological parameter values if in the universe there exists an interaction among the dark matter and dark energy sectors.
Using publicly available code and data, we present a systematic study of projection biases in the weak lensing analysis of the first year of data from the Dark Energy Survey (DES) experiment. In the analysis we used a $Lambda$CDM model and three two-point correlation functions. We show that these biases are a consequence of projecting, or marginalizing, over parameters like $h_0$, $Omega_b$, $n_s$ and $Omega_ u$ that are both poorly constrained and correlated with the parameters of interest like $Omega_m$, $sigma_8$ and $S_8$. Covering the relevant parameter space we show that the projection biases are a function of where the true values of the poorly constrained parameters lie with respect to the parameter priors. For example, biases can exceed the 1.5$sigma$ level if the true values of $h$ and $n_s$ are close to the top of the priors range and the true values of $Omega_b$ and $Omega_ u$ are close to the bottom of the range of their priors. We also show that in some cases the 1D confidence intervals can be over-specified by as much as 30%. Finally we estimate these projection biases for the analysis of three and six years worth of DES data.
We show that the so-called post-Born effects of weak lensing at 4th order are equivalent to lens-lens couplings in the Born Approximation. We demonstrate this by explicitly showing the equivalence of the canonical weak lensing approach at 4th order using the anisotropy remapping method, to that of the 4th order calculation of the lens-lens coupling effects using the Boltzmann equation approach that was first developed in [Phys. Rev. D89, 123006]. Furthermore, we argue that to incorporate true post-Born effects, i.e. taking into account non-straight photon paths, require the addition of a photon deflection term which has not been taken into account in the canonical formalism nor the Boltzmann method.