Do you want to publish a course? Click here

Interferometric Observations of the Cosmic Microwave Background Radiation

103   0   0.0 ( 0 )
 Added by Timothy J. Pearson
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio interferometers are well suited to studies of both total intensity and polarized intensity fluctuations of the cosmic microwave background radiation, and they have been used successfully in measurements of both the primary and secondary anisotropy. Recent observations with the Cosmic Background Imager operating in the Chilean Andes, the Degree Angular Scale Interferometer operating at the South Pole, and the Very Small Array operating in Tenerife have probed the primary anisotropy over a wide range of angular scales. The advantages of interferometers for microwave background observations of both total intensity and polarized radiation are discussed, and the cosmological results from these three instruments are presented. The results show that, subject to a reasonable value for the Hubble constant, which is degenerate with the geometry in closed models, the geometry of the Universe is flat to high precision (~5%) and the primordial fluctuation spectrum is very close to the scale-invariant Harrison-Zeldovich spectrum. Both of these findings are concordant with inflationary predictions. The results also show that the baryonic matter content is consistent with that found from primordial nucleosynthesis, while the cold dark matter component can account for no more than ~40% of the energy density of the Universe. It is a requirement of these observations, therefore, that ~60% of the energy content of the Universe is not related to matter, either baryonic or nonbaryonic. This dark energy component of the energy density is attributed to a nonzero cosmological constant.



rate research

Read More

We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that do not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately recover the underlying B-modes for r=0.01 at 28<l<384, Gaussian-distributed pointing errors must be controlled to 0.7^circ rms for an interferometer with an antenna configuration similar to QUBIC, in agreement with analytical estimates. Only the statistical uncertainty for 28<l<88 would be changed at ~10% level. With the same instrumental configuration, we find the pointing errors would slightly bias the 2-sigma upper limit of the tensor-to-scalar ratio r by ~10%. We also show that the impact of pointing errors on the TB and EB measurements is negligibly small.
We propose an algorithm for the reconstruction of the signal induced by cosmic strings in the cosmic microwave background (CMB), from radio-interferometric data at arcminute resolution. Radio interferometry provides incomplete and noisy Fourier measurements of the string signal, which exhibits sparse or compressible magnitude of the gradient due to the Kaiser-Stebbins (KS) effect. In this context the versatile framework of compressed sensing naturally applies for solving the corresponding inverse problem. Our algorithm notably takes advantage of a model of the prior statistical distribution of the signal fitted on the basis of realistic simulations. Enhanced performance relative to the standard CLEAN algorithm is demonstrated by simulated observations under noise conditions including primary and secondary CMB anisotropies.
This is a summary of presentations delivered at the OC1 parallel session Primordial Gravitational Waves and the CMB of the 12th Marcel Grossmann meeting in Paris, July 2009. The reports and discussions demonstrated significant progress that was achieved in theory and observations. It appears that the existing data provide some indications of the presence of gravitational wave contribution to the CMB anisotropies, while ongoing and planned observational efforts are likely to convert these indications into more confident statements about the actual detection.
287 - L. P. Grishchuk 2010
The authority of J. A. Wheeler in many areas of gravitational physics is immense, and there is a connection with the study of relic gravitational waves as well. I begin with a brief description of Wheelers influence on this study. One part of the paper is essentially a detailed justification of the very existence of relic gravitational waves, account of their properties related to the quantum-mechanical origin, derivation of the expected magnitude of their effects, and reasoning why they should be detectable in the relatively near future. This line of argument includes the comparison of relic gravitational waves with density perturbations of quantum-mechanical origin, and the severe criticism of methods and predictions of inflationary theory. Another part of the paper is devoted to active searches for relic gravitational waves in cosmic microwave background radiation (CMB). Here, the emphasis is on the temperature-polarization TE cross-correlation function of CMB. The expected numerical level of the correlation, its sign, statistics, and the most appropriate interval of angular scales are identified. Other correlation functions are also considered. The overall conclusion is such that the observational discovery of relic gravitational waves looks like the matter of a few coming years, rather than a few decades.
Measurements of the polarization of the cosmic microwave background (CMB) radiation are expected to significantly increase our understanding of the early universe. We present a design for a CMB polarimeter in which a cryogenically cooled half wave plate rotates by means of a high-temperature superconducting (HTS) bearing. The design is optimized for implementation in MAXIPOL, a balloon-borne CMB polarimeter. A prototype bearing, consisting of commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured the coefficient of friction as a function of several parameters including temperature between 15 and 80 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm, and ambient pressure between 10^{-7} and 1 torr. The low rotational drag of the HTS bearing allows rotations for long periods of time with minimal input power and negligible wear and tear thus making this technology suitable for a future satellite mission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا