Do you want to publish a course? Click here

Disc-jet coupling in an atoll-type neutron star X-ray binary: 4U 1728-34 (GX 354-0)

177   0   0.0 ( 0 )
 Added by Simone Migliari
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have analysed 12 simultaneous radio (VLA) and X-ray (RXTE) observations of the atoll-type X-ray binary 4U 1728-34, performed in two blocks in 2000 and 2001. We have found that the strongest and most variable emission seems to be associated with repeated transitions between hard (island) and softer (lower banana) X-ray states, while weaker, persistent radio emission is observed when the source is steadily in the hard X-ray state. There is a significant positive ranking correlation between the radio flux density at 8.46 GHz and the 2-10 keV X-ray flux. Moreover, significant positive ranking correlations between radio flux density and X-ray timing features (i.e. break and low-frequency Lorentzian frequencies) have been found. These correlations represent the first evidence for a coupling between disc and jet in an atoll-type X-ray binary. Furthermore, drawing an analogy between the hard (island) state and the low/hard state of black hole binaries, we confirm previous findings that accreting neutron stars are a factor of ~30 less `radio loud than black holes.



rate research

Read More

We analysed an XMM-Newton plus a simultaneous Rossi X-ray Timing Explorer observation and a separate Suzaku observation of the neutron-star low-mass X-ray binary 4U 1728-34. We fitted the X-ray spectra with the self-consistent reflection model relxill. We found that the inclination angle of 4U 1728-34 is 49 degrees, consistent with the upper limit of 60 degrees deduced from the absence of eclipses or dips in this source. The inclination angle in the fit of the XMM-Newton/RXTE observation is larger than 85 degrees, which may be due to the possible calibration issues of the PN instrument in timing mode. We also found that the thermal emission from the accretion disc is not significant. This could be explained either by the relatively high column density of the interstellar medium along the line of sight to the source, which decreases the number of soft disc photons, or if most of the soft thermal photons from the disc are reprocessed in the corona. The ionisation parameter derived from the fits is larger than the value predicted in the framework of the standard reflection model, wherein the disc is irradiated by an X-ray source above the compact object. This inconsistency suggests that irradiation from the neutron star and its boundary layer may play an important role in the ionisation of the accretion disc, and hence in the reflection component in this source.
611 - V. Tudose 2009
We study the accretion/ejection processes (i.e. disc/jet coupling) in the neutron star X-ray binary Aquila X-1 via a multi-wavelength approach. We use in the radio band the publicly available VLA archive containing observations of the object between 1986-2005, in the X-ray band the archival RXTE data (PCA and HEXTE) between 1997-2008, and in optical (R band) observations with the SMARTS recorded between 1998-2007. In the combined data set we find three outbursts for which quasi-simultaneous radio, optical (R band) and X-ray data exist and focus on them to some extent. We provide evidence that the disc/jet coupling in Aquila X-1 is similar to what has been observed in black hole X-ray binaries, at least from the point of view of the behaviour in the hardness-intensity diagrams (the hysteresis effect included), when the phenomenology of the jet is taken into account. Although based on a very small number of observations, a radio/X-ray correlation seems to exist for this system, with a slope of alpha=0.40 +/- 0.07 (F_{radio} propto F_{X}^{alpha}), which is different than the slope of alpha=1.40 +/- 0.25 found for another atoll source, 4U 1728-34, but interestingly enough is relatively close to the values obtained for several black hole X-ray binaries. No significant correlation is found between the radio and optical (R band) emissions. We also report a significant drop in the radio flux from Aql X-1 above an X-ray flux of ~ 5 X 10^{-9} erg cm^{-2} s^{-1}. This behaviour, also reported in the neutron star X-ray binary 4U 1728-34, may be analogous to the suppression of radio emission in black hole X-ray binaries in bright, soft X-ray states. It suggests that from this point of view neutron star X-ray binaries can mimic the behaviour of black hole X-ray binaries in suppressing the jet in soft/disc-dominated X-ray states.
We studied five XMM-Newton observations of the neutron-star binary 4U 1728$-$34 covering the hard, intermediate and soft spectral states. By jointly fitting the spectra with several reflection models, we obtained an inclination angle of 25$-$53$deg$ and an iron abundance up to 10 times the solar. From the fits with reflection models, we found that the fluxes of the reflection and the Comptonised components vary inconsistently; since the latter is assumed to be the illuminating source, this result possibly indicates the contribution of the neutron star surface/boundary layer to the disc reflection. As the source evolved from the relatively soft to the intermediate state, the disc inner radius decreased, opposite to the prediction of the standard accretion disc model. We also explore the possible reasons why the supersolar iron abundance is required by the data and found that this high value is probably caused by the absence of the hard photons in the XMM-Newton data.
Recent theoretical and observational studies have shown that ashes from thermonuclear burning may be ejected during radius-expansion bursts, giving rise to photoionisation edges in the X-ray spectra. We report a search for such features in Chandra spectra observed from the low-mass X-ray binary 4U 1728-34. We analysed the spectra from four radius-expansion bursts detected in 2006 July, and two in 2002 March, but found no evidence for discrete features. We estimate upper limits for the equivalent widths of edges of a few hundred eV, which for the moderate temperatures observed during the bursts, are comparable with the predictions. During the 2006 July observation 4U 1728-34 exhibited weak, unusually frequent bursts (separated by <2 hr in some cases), with profiles and alpha-values characteristic of hydrogen-poor fuel. Recurrence times as short as those measured are insufficient to exhaust the accreted hydrogen at solar composition, suggesting that the source accretes hydrogen deficient fuel, for example from an evolved donor. The detection for the first time of a 10.77 min periodic signal in the persistent intensity, perhaps arising from orbital modulation, supports this explanation, and suggests that this system is an ultracompact binary similar to 4U 1820-30.
We report on the first observations of neutron star low-mass X-ray binaries with the Atacama Large Millimeter/submillimeter Array (ALMA) at $sim$300 GHz. Quasi-simultaneous observations of 4U 1728-34 and 4U 1820-30 were performed at radio (ATCA), infrared (VLT) and X-ray (Swift) frequencies, spanning more than eight decades in frequency coverage. Both sources are detected at high significance with ALMA. The spectral energy distribution of 4U 1728-34 is consistent with synchrotron emission from a jet with a break from optically thick to optically thin emission at 1.3-11.0$times$10$^{13}$ Hz. This is the third time a jet spectral break has been reported for a neutron star X-ray binary. The radio to mm spectral energy distribution of 4U 1820-30 has significant detections at 5 and 300~GHz. This confirms the presence of radio emission during a soft state for this neutron star and represents the first detection of mm emission during such a state, unambiguously pointing to the presence of a jet. We also report on three additional unrelated sources - showing mm emission - in the ALMA fields of view of 4U 1728-34 and 4U 1820-30.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا