No Arabic abstract
We have designed a medium deep large area X-ray survey with XMM - the XMM Large Scale Structure survey, XMM-LSS - with the scope of extending the cosmological tests attempted using ROSAT cluster samples to two redshift bins between 0<z<1 while maintaining the precision of earlier studies. Two main goals have constrained the survey design: the evolutionary study of the cluster-cluster correlation function and of the cluster number density. The results are promising and, so far, in accordance with our predictions as to the survey sensitivity and cluster number density. The feasibility of the programme is demonstrated and further X-ray coverage is awaited in order to proceed with a truly significant statistical analysis. (Abridged)
We present five newly found galaxy clusters at z>0.6 from the XMM Large-Scale Structure Survey (XMM-LSS). All five objects are extended X-ray sources in the XMM images. For three of them we have sufficient spectroscopically confirmed member galaxies that an estimate of the velocity dispersion is possible: XLSSC 001 at z=0.613 and sigma_V=867^{+80}_{-60} km/s, XLSSC 002 at z=0.772 and sigma_V=524^{+267}_{-116} km/s and XLSSC 003 at z=0.839 and sigma_V=780^{+137}_{-75} km/s. These three clusters have X-ray bolometric luminosities L_X sim 1-3 times 10^{44} erg/s and temperatures 2-4 keV, and consequently are less massive than previously known clusters at similar redshifts, but nevertheless they follow the low redshift scaling relations between L_X, T and sigma_V, within the limits of the measurement errors. One of the clusters, XLSSC 004, is detected independently as an overdensity of galaxies of a colour R-z=1.4 that matches the redshift of the central galaxy z=0.87, although it cannot unambiguously be confirmed by the spectroscopic observations alone. The highest redshift candidate cluster pertaining to this paper, XLSSC 005, is most likely a double cluster complex at a redshift around unity, associated with an extended X-ray source with probable substructure.
We have attempted to analyse all the available data taken by XMM-Newton as it slews between targets. This slew survey, the resultant source catalogue and the analysis procedures used are described in an accompanying paper. In this letter we present the initial science results from the survey. To date, detailed source-searching has been performed in three X-ray bands (soft, hard and total) in the EPIC-pn 0.2-12 keV band over ~6300 sq.degrees (~15% of the sky), and of order 4000 X-ray sources have been detected (~55% of which have IDs). A great variety of sources are seen, including AGN, galaxies, clusters and groups, active stars, SNRs, low- and high-mass XRBs and white dwarfs. In particular, as this survey constitutes the deepest ever hard-band 2-12 keV all-sky survey, a large number of hard sources are detected. Furthermore, the great sensitivity and low-background of the EPIC-pn camera are especially suited to emission from extended sources, and interesting spatial structure is observed in many supernova remnants and clusters of galaxies. The instrument is very adept at mapping large areas of the X-ray sky. Also, as the slew survey is well matched to the ROSAT all-sky survey, long-term variability studies are possible, and a number of extremely variable X-ray sources, some possibly due to the tidal disruption of stars by central supermassive black holes, have been discovered.
We present a first catalogue of X-ray sources resulting from the central area of the XMM-LSS (Large Scale Structure survey). We describe the reduction procedures and the database tools we developed and used to derive a well defined catalogue of X-ray sources. The present catalogue is limited to a sub-sample of 286 sources detected at 4 sigma in the 1 deg^2 area covered by the photometric VVDS (VIRMOS VLT Deep Survey), which allows us to provide optical and radio identifications. We also discuss the X-ray properties of a larger X-ray sample of 536 sources detected at > 4 sigma in the full 3 deg^2 area of the XMM Medium Deep Survey (XMDS) independently of the optical identification. We also derive the logN-logS relationship for a sample of more than one thousand sources that we discuss in the context of other surveys at similar fluxes.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of $700-1800$ MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $sim 15$ arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^circ$ made over a 288 MHz band centred at 887.5 MHz.
We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with $1.3$ Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg$^2$ contiguous field with uniform X-ray coverage totaling $2.7$ Ms of flare-filtered exposure, with a $46$ ks median PN exposure time. We provide an X-ray catalog of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1% expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogs in the same area. Our survey has flux limits of $1.7times10^{-15}$, $1.3times10^{-14}$, and $6.5times10^{-15}$ erg cm$^{-2}$ s$^{-1}$ over 90% of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9% of the X-ray sources, of which 93% are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be $approx 97$% reliable based on deep Chandra coverage over $approx 5$% of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalog, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg$^2$ of our field where forced-aperture multi-band photometry is available; $>70$% of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts.