Do you want to publish a course? Click here

The Presence and Distribution of HI Absorbing Gas in Sub-galactic Sized Radio Sources

64   0   0.0 ( 0 )
 Added by Y. M. Pihlstroem
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the incidence of HI absorption in intrinsically small sub-galactic sized extragalactic sources selected from sources classified as Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources. We find that the smaller sources (<0.5 kpc) have larger HI column densities than the larger sources (>0.5 kpc). Both a spherical and an axi-symmetric gas distribution, with a radial power law density profile, can be used to explain this anti-correlation between projected linear size and HI column density. Since most detections occur in objects classified as galaxies, we argue that if the unified schemes apply to GPS/CSSs a disk distribution for the HI is more likely. The most favoured explanation for the compact sizes of the GPS/CSSs is that they are young sources evolving in a power law density medium. For the GPSs with measured expansion velocities, our derived densities are within an order of magnitude of those estimated from ram-pressure confinement of the lobes assuming equipartition. Our results therefore support the youth model.



rate research

Read More

We present an overview of the occurrence and properties of atomic gas associated with compact radio sources at redshifts up to z=0.85. Searches for HI 21cm absorption were made with the Westerbork Synthesis Radio Telescope at UHF-high frequencies (725-1200 MHz). Detections were obtained for 19 of the 57 sources with usable spectra (33%). We have found a large range in line depths, from tau=0.16 to tau<=0.001. There is a substantial variety of line profiles, including Gaussians of less than 10km/s, to more typically 150km/s, as well as irregular and multi-peaked absorption profiles, sometimes spanning several hundred km/s. Assuming uniform coverage of the entire radio source, we obtain column depths of atomic gas between 1e19 and 3.3e21(Tsp/100K)(1/f)cm^(-2). There is evidence for significant gas motions, but in contrast to earlier results at low redshift, there are many sources in which the HI velocity is substantially negative (up to v=-1420km/s) with respect to the optical redshift, suggesting that in these sources the atomic gas, rather than falling into the centre, may be be flowing out, interacting with the jets, or rotating around the nucleus.
We present Keck Interferometer observations of the three prototypical FU Orionis stars, FU Ori, V1057 Cyg, and V1515 Cyg. With a spatial resolution of a few milli-arcseconds and a spectral resolution of 2000, our near-infrared observations spatially resolve gas and dust emission extending from stellocentric radii of ~0.05 AU to several AU. We fit these data with accretion disk models where each stellocentric radius of the disk is represented by a supergiant-type stellar emission spectrum at the disk temperature. A disk model is consistent with the data for FU Ori, although we require some local asymmetry in the disk. For V1057 Cyg the disk model does not fit our data well, especially compared to the fit quality achieved for FU Ori. We speculate that a disk wind may be contributing substantially to the observed near-IR emission in this source. The data for V1515 Cyg are noisier than the data obtained for the other two objects, and do not strongly constrain the validity of an accretion disk model.
160 - P.M.W. Kalberla , J. Kerp 2016
The local Galactic HI gas was found to contain cold neutral medium (CNM) filaments that are aligned with polarized dust emission. These filaments appear to be dominated by the magnetic field and in this case turbulence is expected to show distinct anisotropies. We use the Galactic Effelsberg--Bonn HI Survey (EBHIS) to derive 2D turbulence spectra for the HI distribution in direction to 3C196 and two more comparison fields. Prior to Fourier transform we apply a rotational symmetric 50% Tukey window to apodize the data. We derive average as well as position angle dependent power spectra. Anisotropies in the power distribution are defined as the ratio of the spectral power in orthogonal directions. We find strong anisotropies. For a narrow range in position angle, in direction perpendicular to the filaments and the magnetic field, the spectral power is on average more than an order of magnitude larger than parallel. In the most extreme case the anisotropy reaches locally a factor of 130. Anisotropies increase on average with spatial frequency as predicted by Goldreich and Sridhar, at the same time the Kolmogorov spectral index remains almost unchanged. The strongest anisotropies are observable for a narrow range in velocity and decay with a power law index close to --8/3, almost identical to the average isotropic spectral index of $-2.9 < gamma < -2.6$. HI filaments, associated with linear polarization structures in LOFAR observations in direction to 3C196, show turbulence spectra with marked anisotropies. Decaying anisotropies appear to indicate that we witness an ongoing shock passing the HI and affecting the observed Faraday depth.
499 - Yogesh Chandola 2009
We report the results of our observations of HI absorption towards the central region of the rejuvenated radio galaxy 4C29.30 (J0840+2949) with the Giant Metrewave Radio Telescope (GMRT). The radio source has diffuse, extended emission with an angular size of $sim$520 arcsec (639 kpc) within which a compact edge-brightened double-lobed source with a size of 29 arcsec (36 kpc) is embedded. The absorption profile which is seen towards the central component of the inner double is well resolved and consists of six components; all but one of which appears to be red-shifted relative to the optical systemic velocity. The neutral hydrogen column density is estimated to be $N$(HI)=4.7$times10^{21}$($T_s$/100)($f_c$/1.0) cm$^{-2}$, where $T_s$ and $f_c$ are the spin temperature and covering factor of the background source respectively. This detection reinforces a strong correlation between the occurrence of HI absorption and rejuvenation of radio activity suggested earlier, with the possibility that the red-shifted gas is fuelling the recent activity.
The spatial distribution of the HI gas in galaxies holds important clues on the physical processes that shape the structure and dynamics of the interstellar medium (ISM). In this work, we quantify the structure of the HI gas in a sample of 33 nearby galaxies taken from the THINGS Survey using the delta-variance spectrum. The THINGS galaxies display a large diversity in their spectra, however, there are a number of recurrent features. In many galaxies, we observe a bump in the spectrum on scales of a few to several hundred pc. We find the characteristic scales associated with the bump to be correlated with galactic SFR for values of the SFR > 0.5 M$_{sol}$ yr$^{-1}$ and also with the median size of the HI shells detected in those galaxies. On larger scales, we observe the existence of two self-similar regimes. The first one, on intermediate scales is shallow and the power law that describes this regime has an exponent in the range [0.1-1] with a mean value of 0.55 which is compatible with the density field being generated by supersonic turbulence in the cold phase of the HI gas. The second power law is steeper, with a range of exponents between [0.5-1.5] and a mean value of 1.5. These values are associated with subsonic turbulence which is characteristic of the warm phase of the HI gas. The spatial scale at which the transition between the two regimes occurs is found to be $approx 0.5 R_{25}$ which is similar to the size of the molecular disk in the THINGS galaxies. Overall, our results suggest that on scales < $0.5 R_{25}$, the structure of the ISM is affected by the effects of supernova explosions. On larger scales (> 0.5 $R_{25}$), stellar feedback has no significant impact, and the structure of the ISM is determined by large scale processes that govern the dynamics of the gas in the warm neutral medium such as the flaring of the HI disk and the effects of ram pressure stripping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا