No Arabic abstract
We perform absolute timing of PSR B1821-24 in M28, using a 50 ksec observation with Chandra/HRC-S. We have obtained the highest signal-to-noise X-ray pulsed lightcurve of this source to date, detecting two X-ray pulses, as well as significant non-pulsed emission -- a persistent X-ray flux which comprises 15+/-3% of the total X-ray flux of the pulsar. The Gaussian width of the sharp X-ray peak is 34+/-3 micro-sec in time, implying a size of the X-ray beam as it crosses the line of sight of 4.0+/-0.4 deg. We find evidence for a significant trailing component in both X-ray peaks of the pulse profile. Including three RXTE/PCA observations in our analysis, and tying the phases together using a radio ephemeris obtained at Nancay, we find the absolute phases in the X-ray wander with respect to this radio ephemeris by up to 60 micro-sec, likely due to the variable dispersion measure, which changes the pulse arrival time in the radio band but not the X-ray band. The present analysis makes clear that study of pulsar timing noise properties in millisecond pulsars such as PSR B1821-24 -- hitherto only studied at radio wavelengths, where variable dispersion measure requires a significant correction -- can be studied at X-ray wavelengths, where the effect of variable dispersion measure is negligible. We also examine the known uncertainties in the absolute Chandra/HRC-S timing accuracy, which amount to +/-12 microsec. We limit the amount of linear drift in the relative timing accuracy of HRC-S to <3e-10 s s-1.
We report results on the timing and spectral analysis of observations of the millisecond pulsar PSR B1821-24 with RXTE, BeppoSAX and Chandra. The X-ray light curve is characterized by two narrow peaks at a phase distance of 0.452+/-0.002. The average pulsed emission, over the range 1.6-20 keV, is well represented by a single power law with a photon index alpha=1.30 +0.05 -0.02 and unabsorbed (2-10 keV) pulsed X-ray flux of 3.9x10^(-13) erg cm^(-2) s^(-1). We searched for a possible bunching of X-ray photons to verify if the X ray emission has a time structure similar to that of giant pulses and found a negative result.
We report on the observation of a very small glitch observed for the first time in a millisecond pulsar, PSR B1821-24 located in the globular cluster M28. Timing observations were mainly conducted with the Nancay radiotelescope (France) and confirmation comes from the 140ft radiotelescope at Green Bank and the new Green Bank Telescope data. This event is characterized by a rotation frequency step of 3 nHz, or 10^-11 in fractional frequency change along with a short duration limited to a few days or a week. A marginally significant frequency derivative step was also found. This glitch follows the main characteristics of those in the slow period pulsars, but is two orders of magnitude smaller than the smallest ever recorded. Such an event must be very rare for millisecond pulsars since no other glitches have been detected when the cumulated number of years of millisecond pulsar timing observations up to 2001 is around 500 for all these objects. However, pulsar PSR B1821-24 is one of the youngest among the old recycled ones and there is likely a correlation between age, or a related parameter, and timing noise. While this event happens on a much smaller scale, the required adjustment of the star to a new equilibrium figure as it spins down is a likely common cause for all glitches.
We report a 5.4sigma detection of pulsed gamma rays from PSR B1821-24 in the globular cluster M28 using ~44 months of Fermi Large Area Telescope (LAT) data that have been reprocessed with improved instrument calibration constants. We constructed a phase-coherent ephemeris, with post-fit residual RMS of 3 mu s, using radio data spanning ~23.2 years, enabling measurements of the multi-wavelength light curve properties of PSR B1821-24 at the milliperiod level. We fold RXTE observations of PSR B1821-24 from 1996 to 2007 and discuss implications on the emission zones. The gamma-ray light curve consists of two peaks, separated by 0.41$pm$0.02 in phase, with the first gamma-ray peak lagging the first radio peak by 0.05$pm$0.02 in phase, consistent with the phase of giant radio pulses. We observe significant emission in the off-peak interval of PSR B1821-24 with a best-fit LAT position inconsistent with the core of M28. We do not detect significant gamma-ray pulsations at the spin or orbital periods from any other known pulsar in M28, and we place limits on the number of energetic pulsars in the cluster. The derived gamma-ray efficiency, ~2%, is typical of other gamma-ray pulsars with comparable spin-down power, suggesting that the measured spin-down rate ($2.2times10^{36}$ erg s$^{-1}$) is not appreciably distorted by acceleration in the cluster potential. This confirms PSR B1821-24 as the second very energetic millisecond pulsar in a globular cluster and raises the question of whether these represent a separate class of objects that only form in regions of very high stellar density
We report here the results of the first Chandra X-Ray Observatory observations of the globular cluster M28 (NGC 6626). 46 X-ray sources are detected, of which 12 lie within one core radius of the center. We show that the apparently extended X-ray core emission seen with the ROSAT HRI is due to the superposition of multiple discrete sources for which we determine the X-ray luminosity function down to a limit of about 6xE30 erg/s. For the first time the unconfused phase-averaged X-ray spectrum of the 3.05-ms pulsar B1821--24 is measured and found to be best described by a power law with photon index ~ 1.2. Marginal evidence of an emission line centered at 3.3 keV in the pulsar spectrum is found, which could be interpreted as cyclotron emission from a corona above the pulsars polar cap if the the magnetic field is strongly different from a centered dipole. The unabsorbed pulsar flux in the 0.5--8.0 keV band is ~3.5xE-13 ergs/s/cm^2. Spectral analysis of the 5 brightest unidentified sources is presented. Based on the spectral parameters of the brightest of these sources, we suggest that it is a transiently accreting neutron star in a low-mass X-ray binary, in quiescence. Fitting its spectrum with a hydrogen neutron star atmosphere model yields the effective temperature T_eff^infty = 90^{+30}_{-10} eV and the radius R_NS^infty = 14.5^{+6.9}_{-3.8} km. In addition to the resolved sources, we detect fainter, unresolved X-ray emission from the central core of M28. Using the Chandra-derived positions, we also report on the result of searching archival Hubble Space Telescope data for possible optical counterparts.
The frequency dependence of radio pulse arrival times provides a probe of structures in the intervening media. Demorest et al. 2013 was the first to show a short-term (~100-200 days) reduction in the electron content along the line of sight to PSR J1713+0747 in data from 2008 (approximately MJD 54750) based on an apparent dip in the dispersion measure of the pulsar. We report on a similar event in 2016 (approximately MJD 57510), with average residual pulse-arrival times of approximately 3.0,-1.3, and -0.7 microseconds at 820, 1400, and 2300 MHz, respectively. Timing analyses indicate possible departures from the standard nu^-2 dispersive-delay dependence. We discuss and rule out a wide variety of potential interpretations. We find the likeliest scenario to be lensing of the radio emission by some structure in the interstellar medium, which causes multiple frequency-dependent pulse arrival-time delays.