No Arabic abstract
We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms of stabilizing the system: the 2:1 mean motion resonance between the two planets can act as the first mechanism for all stable orbits. The second mechanism is a dynamical antialignment of the apsidal lines of the orbiting planets, which implies that the difference of the periastron longitudes $theta_{3}$ librates about $180^{circ}$ in the simulations. We also use a semi-analytical model to explain the numerical results for the system under study.
We investigated the apsidal motion for the multi-planet systems. In the simulations, we found that the two planets of HD 37124, HD 12661, 47 Uma and HD 82943 separately undergo apsidal alignment or antialignment. But the companions of GJ 876 and $upsilon$ And are only in apsidal lock about $0^{circ}$. Moreover, we obtained the criteria with Laplace-Lagrange secular theory to discern whether a pair of planets for a certain system are in libration or circulation.
We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodness of fit and the dynamical properties of the best-fit double-Keplerian model as a function of the poorly constrained eccentricity and argument of periapse of the outer planets orbit. The fit with the minimum chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar. However, the minimum is relatively shallow, and there is a wide range of fits outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest order, eccentricity-type mean-motion resonance variables at the 2:1 commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For sin i = 1, there are also some good fits with only theta_1 (involving the inner planets periapse longitude) librating that are stable for at least 10^8 years. The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for theta_2 for the stable good fit with the smallest libration amplitudes of both theta_1 and theta_2. We do not find any good fits that are non-resonant and stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1 mean-motion resonance, with at least theta_1 librating, and the observations may even be consistent with small-amplitude librations of both theta_1 and theta_2.
We carry out numerical simulations to explore the dynamical evolution of the HD 82943 and HD 37124 planetary systems,which both have two Jupiter-like planets. By simulating various planetary configurations in the neighborhood of the fitting orbits, we find three mechanisms to maintain the stability of these systems: For HD 82943,we find that the 2:1 mean motion resonance can act as the first mechanism for all the stable orbits. The second mechanism is the alignment of the periastron of the two planets of HD 82943 system. In the paper,we show one case is simultaneously maintained by the two mechanisms. Additionally,we also use the corresponding analytical models successfully to explain the different numerical results for the system. The third mechanism is the Kozai resonance which takes place in the mutual highly orbits of HD 37124. In the simulations,we discover that the argument of periastron $omega$ of the inner planet librates about $90^{circ}$ or $270^{circ}$ for the whole time span. The Kozai mechanism can explain the stable configuration of large eccentricity of the inner planet.
We present an updated analysis of radial velocity data of the HD 82943 planetary system based on 10 years of measurements obtained with the Keck telescope. Previous studies have shown that the HD 82943 system has two planets that are likely in 2:1 mean-motion resonance (MMR), with the orbital periods about 220 and 440 days (Lee et al. 2006). However, alternative fits that are qualitatively different have also been suggested, with two planets in a 1:1 resonance (Gozdziewski & Konacki 2006) or three planets in a Laplace 4:2:1 resonance (Beauge et al. 2008). Here we use c{hi}2 minimization combined with parameter grid search to investigate the orbital parameters and dynamical states of the qualitatively different types of fits, and we compare the results to those obtained with the differential evolution Markov chain Monte Carlo method. Our results support the coplanar 2:1 MMR configuration for the HD 82943 system, and show no evidence for either the 1:1 or 3-planet Laplace resonance fits. The inclination of the system with respect to the sky plane is well constrained at about 20(+4.9 -5.5) degree, and the system contains two planets with masses of about 4.78 MJ and 4.80 MJ (where MJ is the mass of Jupiter) and orbital periods of about 219 and 442 days for the inner and outer planet, respectively. The best fit is dynamically stable with both eccentricity-type resonant angles {theta}1 and {theta}2 librating around 0 degree.
We have numerically explored the stable planetary geometry for the multiple systems involved in a 2:1 mean motion resonance, and herein we mainly study the HD 82943 system by employing two sets of the orbital parameters (Mayor et al. 2004; Ji et al. 2004). In the simulations, we find that all stable orbits are related to the 2:1 resonance that can help to remain the semi-major axes for two companions almost unaltered over the secular evolution for $10^{8}$ yr. In addition, we also show that there exist three possible stable configurations:(1) Type I, only $theta_{1} approx 0^{circ}$, (2) Type II, $theta_{1}approxtheta_{2}approxtheta_{3}approx 0^{circ}$ (aligned case), and (3) Type III, $theta_{1}approx 180^{circ}$, $theta_{2}approx0^{circ}$, $theta_{3}approx180^{circ}$ (antialigned case), where two resonant arguments are $theta_{1} = lambda_{1} - 2lambda _{2} + varpi_{1}$ and $theta_{2} = lambda_{1} - 2lambda_{2} + varpi_{2}$, the relative apsidal longitudes $theta_{3} = varpi_{1}-varpi_{2}=Deltavarpi$. And we find that other 2:1 resonant systems (e.g., GJ 876) may possess one of three stable orbits in their realistic motions. Moreover, we also study the existence of the assumed terrestrial bodies at $sim 1$ AU for HD 82943 and GJ 876 systems (see main texts).