Experience with core-collapse supernova simulations shows that accurate accounting of total particle number and 4-momentum can be a challenge for computational radiative transfer. This accurate accounting would be facilitated by the use of particle number and 4-momentum transport equations that allow transparent conversion between volume and surface integrals in both configuration and momentum space. Such conservative formulations of general relativistic kinetic theory in multiple spatial dimensions are presented in this paper, and their relevance to core-collapse supernova simulations is described.