No Arabic abstract
The results from an X-ray spectroscopic study of the giant elliptical galaxy NGC5044 in the center of a galaxy group are presented. The line dominated soft X-ray spectra (mainly Fe-L and O VIII Ly_a) from the diffuse gas are resolved for the first time in this system with the Reflection Grating Spectrometers on-board XMM-Newton and provide a strong constraint on the temperature structure. The spectra integrated over 2 (sim 20kpc) in full-width can be described by a two temperature plasma model of 0.7keV and 1.1keV. Most of the latter component is consistent with originating from off-center regions. Compared to the isobaric cooling flow prediction, the observation shows a clear cut-off below a temperature of 0.6 +-0.1keV. Furthermore, the Fe and O abundances within the central 10--20kpc in radius are accurately measured to be 0.55+-0.05 and 0.25+-0.1 times the solar ratios, respectively. The observed cut-off temperature of this galaxy and other central galaxies in galaxy groups and clusters are compared with the scale of the galaxy and properties of the surrounding intra-cluster medium. Based on this comparison, the origin of the lack of predicted cool emission is discussed.
We present the first high-resolution, soft-X-ray spectrum of the prototypical Seyfert 2 galaxy, NGC 1068. This spectrum was obtained with the XMM-Newton Reflection Grating Spectrometer. Emission lines from H-like and He-like low-Z ions (from C to Si) and Fe-L-shell ions dominate the spectrum. Strong, narrow radiative recombination continua (RRC) for several ions are also present, implying that most of the observed soft-X-ray emission arises in low-temperature (few eV) plasma. This plasma is photoionized by the inferred nuclear continuum (obscured along our line of sight), as in the unified model of active galactic nuclei (AGN). We find excess emission (compared with pure recombination) in all resonance lines (np to 1s) up to the photoelectric edge, demonstrating the importance of photoexcitation as well. We introduce a simple model of a cone of plasma irradiated by the nuclear continuum; the line emission we observe along our line of sight perpendicular to the cone is produced through recombination/radiative cascade following photoionization and radiative decay following photoexcitation. A remarkably good fit is obtained to the H-like/He-like ionic line series, with inferred radial ionic column densities consistent with recent observations of warm absorbers in Seyfert 1 galaxies. Previous Chandra imaging revealed a large (extending out to 500 pc) ionization cone containing most of the X-ray flux, implying that the warm absorber in NGC 1068 is a large-scale outflow. To explain the ionic column densities, a broad, flat distribution in the logarithm of the ionization parameter ($xi=L_X/n_e r^2$) is necessary, spanning $logxi=0$--3. This suggests either radially-stratified ionization zones or the existence of a broad density distribution (spanning a few orders of magnitude) at each radius.
High resolution spectra of the active binary Capella (G8 III + G1 III) covering the energy range 0.4-8.0 keV (1.5-30 Angstroms) show a large number of emission lines, demonstrating the performance of the HETGS. A preliminary application of plasma diagnostics provides information on coronal temperatures and densities. Lines arising from different elements in a range of ionization states indicate that Capella has plasma with a broad range of temperatures, from log T = 6.3 to 7.2, generally consistent with recent results from observations with the Extreme Ultraviolet Explorer (EUVE) and the Advanced Satellite for Cosmology and Astrophysics (ASCA). The electron density is determined from He-like O VII lines, giving the value N_e=10^10 cm^-3 at T_e=2*10^6 K; He-like lines formed at higher temperatures give only upper limits to the electron density. The density and emission measure from O VII lines together indicate that the coronal loops are significantly smaller than the stellar radius.
Context: XMM-Newton was launched on 10 December 1999 and has been operational since early 2000. One of the instruments onboard XMM-Newton is the reflection grating spectrometer (RGS). Two identical RGS instruments are available, with each RGS combining a reflection grating assembly (RGA) and a camera with CCDs to record the spectra. Aims: We describe the calibration and in-orbit performance of the RGS instrument. By combining the preflight calibration with appropriate inflight calibration data including the changes in detector performance over time, we aim at profound knowledge about the accuracy in the calibration. This will be crucial for any correct scientific interpretation of spectral features for a wide variety of objects. Methods: Ground calibrations alone are not able to fully characterize the instrument. Dedicated inflight measurements and constant monitoring are essential for a full understanding of the instrument and the variations of the instrument response over time. Physical models of the instrument are tuned to agree with calibration measurements and are the basis from which the actual instrument response can be interpolated over the full parameter space. Results: Uncertainties in the instrument response have been reduced to < 10% for the effective area and < 6 mA for the wavelength scale (in the range from 8 A to 34 A. The remaining systematic uncertainty in the detection of weak absorption features has been estimated to be 1.5%. Conclusions: Based on a large set of inflight calibration data and comparison with other instruments onboard XMM-Newton, the calibration accuracy of the RGS instrument has been improved considerably over the preflight calibrations.
We utilize the complimentary capabilities of XMM-Newton and Chandra, to conduct a detailed imaging and spectral study of the nearby galaxy NGC 4945 focussing on its nucleus and immediate surroundings (within ~1 kpc of the nucleus). A complex morphology is revealed including a predominantly hard, but partially resolved, nuclear source plus a spectrally soft, conically shaped X-ray plume, which extends 30 (500 pc) to the northwest. In NGC 4945 our direct view of the active galactic nucleus (AGN) is blocked below ~10 keV by extremely heavy line-of-sight absorption and the observed X-ray spectrum is dominated by multi-temperature thermal emission associated with the nuclear starburst and the X-ray plume. Nevertheless the signature of the AGN is present in the form of a neutral Compton reflection component and a 6.4 keV fluorescent iron Ka line. We conjecture that the site of the continuum reprocessing is the far wall of a highly inclined molecular torus, a geometry which is consistent with the presence of H2O megamaser emission in this source. The soft spectrum (~0.6 keV) and limb-brightened appearance of the X-ray plume suggest an interpretation in terms of a mass-loaded superwind emanating from the nuclear starburst.
We present high-resolution soft-X-ray spectra of the prototypical Seyfert 2 galaxy, NGC 1068, taken with XMM-Newton RGS and Chandra LETGS. Its rich emission-line spectrum is dominated by recombination in a warm plasma (bright, narrow radiative recombination continua provide the ``smoking gun), which is photoionized by the inferred nuclear power-law continuum. Radiative decay following photoexcitation of resonant transitions is also significant. A self-consistent model of an irradiated cone of gas is capable of reproducing the hydrogenic/heliumlike ionic line series in detail. The radial ionic column densities we infer are consistent with absorption measurements (the warm absorber) in Seyfert 1 galaxies. This strongly suggests that the emission spectrum we observe from NGC 1068 emanates from its warm absorber. The observed extent of the ionization-cone/warm absorber in NGC 1068 of about 300 pc implies that a large fraction of the gas associated with generic warm absorbers may typically exist on the hundreds-of-parsec scale rather than much closer to the nucleus (e.g., less than a parsec). Spatially-resolved spectroscopy using the LETGS of two distinct emission regions yields two noticeably different spectra. We show that these differences are solely due to differing radial column densities. A fairly flat distribution in ionization parameter is necessary to explain the inferred radial ionic column densities of all spectra. This must primarily be due to a broad density distribution at each radius, spanning roughly 0.1-100 cm$^{-3}$. (Abridged)