Do you want to publish a course? Click here

An outflow from the nebula around the LBV candidate S 119

57   0   0.0 ( 0 )
 Added by Dr. Kerstin Weis
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the kinematic and morphological structure of the nebula around the LMC LBV candidate S 119. On HST images, we find a predominantly spherical nebula which, however, seems to be much better confined in its eastern hemisphere than in the western one. The filamentary western part of the nebula is indicative of matter flowing out of the nebulas main body. This outflow is even more evidenced by our long-slit echelle spectra. They show that, while most of the nebula has an expansion velocity of 25.5 km/s, the outflowing material reaches velocities of almost 140 km/s, relative to the systemic one. A ROSAT HRI image shows no trace of S 119 and thus no indications of hot or shocked material.



rate research

Read More

We present and discuss new long-slit Echelle spectra of the LMC LBV candidate Sk-69 279 and put them in context with previous images and spectra. While at first glance a simple spherically expanding symmetric shell, we find a considerably more complex morphology and kinematics. The spectra indicate that morphologically identified deviations from sphericity are outflows of faster material out of the main body of Sk-69 279. The morphological as well as the kinematic similarity with other LBV nebulae makes it likely that Sk-69 279 is an LBV candidate, indeed, and poses the question in how far outflows out of expanding LBV nebulae are a general property of such nebulae--at least during some phases of their evolutions.
The bright X-ray binary X2127+119 in the core of the globular cluster M15 has long been thought to be in an unusual evolutionary state, in which the binary is embedded in a common envelope. Support for this idea comes from X2127+119s absorption lines, which are blue shifted at all orbital phases, indicating the existence of outflows from the system. A common-envelope scenario implies that the absorption lines should exhibit maximum blue shift near mid-eclipse (binary phase 0.0). We have re-analysed INT spectra of X2127+119 obtained in 1986, 1987 and 1988 using the latest orbital ephemeris (substantially different from that used in the original analysis), and find that the orbital phase at which the absorption lines show a maximum blue shift is not 0.0, but rather 0.25 -- 0.3. These results indicate that a common-envelope scenario for X2127+119 may not work. In addition, from spectrograms of the He II 4686 line, we report the first tentative detection of X2127+119s companion star.
71 - R.Kurtev 2001
We present the light curve of Luminous Blue Variable candidate star GR290 (Romanos star) in M33. The photographic photometry was made in photographic plates taken in B band of the M33 galaxy and cover an eight year period, 1982 - 1990. Twenty five plates, separated in seven groups, have been used. CCD B magnitude of the star is also presented. The analysis of our data together with the Romanos magnitudes (1978) shows normal eruptions with amplitude of more than 1 mag and timescale of about 20 years and smaller oscillations with amplitude 0.5 mag and a period of about 320 days. This is a typical photometrical behavior for LBVs.
226 - Kerstin Weis 2002
The most massive evolved stars (above 50 M_sun) undergo a phase of extreme mass loss in which their evolution is reversed from a redward to a blueward motion in the HRD. In this phase the stars are known as Luminous Blue Variables (LBVs) and they are located in the HRD close to the Humphreys-Davidson limit. It is far from understood what causes the strong mass loss or what triggers the so-called giant eruptions, active events in which in a short time a large amount of mass is ejected. Here I will present results from a larger project devoted to better understand LBVs through studying the LBV nebulae. These nebulae are formed as a consequence of the strong mass loss. The analysis concentrates on the morphology and kinematics of these nebulae. Of special concern was the frequently observed bipolar nature of the LBV nebulae. Bipolarity seems to be a general feature and strongly constrains models of the LBV phase and especially of the formation of the nebulae. In addition we found outflows from LBV nebulae, the first evidence for ongoing instabilities in the nebulae.
We have analyzed the ALMA archival data of the SO ($J_N=6_5-5_4$ and $J_N=7_6-6_5$), CO ($J=2-1$), and CCH ($N=3-2, J=7/2-5/2, F=4-3$) lines from the class 0 protobinary system, NGC1333 IRAS 4A. The images of SO ($J_N = 6_5-5_4$) and CO ($J=2-1$) successfully separate two northern outflow lobes connected to each protostar, IRAS 4A1 and IRAS 4A2. The outflow from IRAS 4A2 shows an S-shaped morphology, consisting of a flattened envelope around IRAS 4A2 with two outflow lobes connected to both edges of the envelope. The flattened envelope surrounding IRAS 4A2 has an opposite velocity gradient to that of the circumbinary envelope. The observed features are reproduced by the magnetohydrodynamic simulation of the collapsing core whose magnetic field direction is misaligned to the rotational axis. Our simulation shows that the intensity of the outflow lobes is enhanced on one side, resulting in the formation of S-shaped morphology. The S-shaped outflow can also be explained by the precessing outflow launched from an unresolved binary with a separation larger than 12 au (0.04arcsec). Additionally, we discovered a previously unknown extremely high velocity component at $sim$45-90 km/s near IRAS 4A2 with CO. CCH ($J_{N,F}=7/2_{3,4}-5/2_{2,3}$) emission shows two pairs of blobs attaching to the bottom of shell like feature, and the morphology is significantly different from those of SO and CO lines. Toward IRAS 4A2, the S-shaped outflow shown in SO is overlapped with the edges of CCH shells, while CCH shells have the velocity gradients opposite to the flattened structure around IRAS 4A2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا