Do you want to publish a course? Click here

Mid-Infrared Identification of Faint Submillimeter Sources

55   0   0.0 ( 0 )
 Added by Yasunori Sato
 Publication date 2002
  fields Physics
and research's language is English
 Authors Y. Sato




Ask ChatGPT about the research

Faint submillimeter sources detected with the Submillimeter Common-User Bolometer Array on the James Clerk Maxwell Telescope have faced an identification problem due to the telescopes broad beam profile. Here we propose a new method to identify such submillimeter sources with a mid-infrared image having a finer point spread function. The Infrared Space Observatory has provided a very deep 6.7 um image of the Hawaii Deep Field SSA13. All three faint 850 um sources in this field have their 6.7 um counterparts. They have been identified with interacting galaxy pairs in optical images. These pairs are also detected in the radio. Two of them are optically faint and very red (I>24, I-K>4), one of which has a hard X-ray detection with the Chandra satellite. As these observing properties are similar to those of local ultraluminous infrared galaxies, their photometric redshifts are derived based on submillimeter to mid-infrared flux ratios assuming a spectral energy distribution (SED) of Arp220. Other photometric redshifts are obtained via chi^2 minimization between the available photometry data and template SEDs. Both estimates are in the range z=1-2, in good agreement with a spectroscopic redshift and a millimetric one. The reconstructed Arp220 SEDs with these redshift estimates are consistent with all the photometry data except Chandras hard X-ray detection. The sources would be a few times more luminous than Arp220. With an assumption that AGN contributions are negligible, it appears that extremely high star formation rates are occurring in galaxies at high redshifts with massive stellar contents already in place.



rate research

Read More

We investigate the nature of 24micron sources in M33 which have weak or no associated Halpha emission. Both bright evolved stars and embedded star forming regions are visible as compact infrared sources in the 8 and 24micron maps of M33 and contribute to the more diffuse and faint emission in these bands. Can we distinguish the two populations? We carry out deep CO J=2-1 and J=1-0 line searches at the location of compact mid-IR sources to unveil an ongoing star formation process. We use different assumptions to estimate cloud masses from pointed observations and analyze if SED and mid-IR colours can be used to discriminate between evolved stars and star forming regions. Molecular emission has been detected at the location of several sources at the level of 0.3 K km/s or higher in at least one of the CO rotational lines. Even though there are no giant molecular clouds beyond 4kpc in M33, our deep observations have revealed that clouds of smaller mass are very common. Sources which are known to be evolved variable stars show weaker or undetectable CO lines. Evolved stars occupy a well defined region of the IRAC color-color diagrams. Star forming regions are scattered throughout a larger area even though the bulk of the distribution has different IRAC colors than evolved variable stars. We estimate that about half of the 24 micron sources without an Halpha counterpart are genuine embedded star forming regions. Sources with faint but compact Halpha emission have an incomplete Initial Mass Function (IMF) at the high-mass end and are compatible with a population of young clusters with a stochastically sampled, universal IMF.
123 - K. Coppin 2010
Spitzer spectroscopy has revealed that ~80% of submm galaxies (SMGs) are starburst (SB) dominated in the mid-infrared. Here we focus on the remaining ~20% that show signs of harboring powerful active galactic nuclei (AGN). We have obtained Spitzer-IRS spectroscopy of a sample of eight SMGs which are candidates for harboring powerful AGN on the basis of IRAC color-selection (S8/S4.5>2; i.e. likely power-law mid-infrared SEDs). SMGs with an AGN dominating (>50%) their mid-infrared emission could represent `missing link sources in an evolutionary sequence involving a major merger. First of all, we detect PAH features in all of the SMGs, indicating redshifts from 2.5-3.4, demonstrating the power of the mid-infrared to determine redshifts for these optically faint dusty galaxies. Secondly, we see signs of both star-formation (from the PAH features) and AGN activity (from continuum emission) in our sample: 62% of the sample are AGN-dominated in the mid-infrared with a median AGN content of 56%, compared with <30% on average for typical SMGs, revealing that our IRAC color selection has successfully singled out sources with proportionately more AGN emission than typical SB-dominated SMGs. However, we find that only about 10% of these AGN dominate the bolometric emission of the SMG when the results are extrapolated to longer infrared wavelengths, implying that AGN are not a significant power source to the SMG population overall, even when there is evidence in the mid-infrared for substantial AGN activity. When existing samples of mid-infrared AGN-dominated SMGs are considered, we find that S8/S4.5>1.65 works well at selecting mid-infrared energetically dominant AGN in SMGs, implying a duty cycle of ~15% if all SMGs go through a subsequent mid-infrared AGN-dominated phase in the proposed evolutionary sequence.
177 - B. Magnelli , D. Lutz , S. Berta 2010
We use deep observations obtained with the Photodetector Array Camera and Spectrometer (PACS) onboard the Herschel space observatory to study the far-infrared (FIR) properties of submm and optically faint radio galaxies (SMGs and OFRGs). From literature we compiled a sample of 35 securely identified SMGs and nine OFRGs located in the GOODS-N and the A2218 fields. This sample is cross-matched with our PACS 100 um and 160 um multi-wavelength catalogs. About half of the galaxies in our sample are detected with PACS. The dust temperatures and the infrared luminosities of our galaxies are derived by fitting their PACS and SCUBA 850 um (only the upper limits for the OFRGs) flux densities with a single modified (beta=1.5) black body function. The median dust temperature of our SMG sample is T=36+/-8K while for our OFRG sample it is T=47+/-3K. For both samples, median dust temperatures derived from Herschel data agree well with previous estimates. In particular, Chapman et al. (2005) found a dust temperature of T=36+/-7K for a large sample of SMGs assuming the validity of the FIR/radio correlation. The agreement between our studies confirms that the local FIR/radio correlation effectively holds at high redshift even though we find <q>=2.17+/-0.19, a slightly lower value than that observed in local systems. The median IR luminosities of SMGs and OFRGs are 4.6*10^12 Lsun and 2.6*10^12 Lsun, respectively. We note that for both samples the IR luminosity estimates from the radio part of the spectral energy distribution are accurate, while estimates from the mid-IR are considerably (x3) more uncertain. Our observations confirm the remarkably high luminosities of SMGs and thus imply median star-formation rates of 960Msun yr^-1 for SMGs with S(850um)>5mJy and 460Msun yr^-1 for SMGs with S(850um)>2mJy, assuming a Chabrier IMF and no dominant AGN contribution to the far-infrared luminosity.
Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6um when using sensitive Spitzer observations with uJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4GHz flux density to 3.6um flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
Using the Spitzer Space Telescope, we have obtained rest frame 9-16mu spectra of 11 quasars and 9 radio galaxies from the 3CRR catalog at redshifts 1.0<z<1.4. This complete flux-limited 178MHz-selected sample is unbiased with respect to orientation and therefore suited to study orientation-dependent effects in the most powerful active galactic nuclei (AGN). The mean radio galaxy spectrum shows a clear silicate absorption feature (tau_9.7mu = 1.1) whereas the mean quasar spectrum shows silicates in emission. The mean radio galaxy spectrum matches a dust-absorbed mean quasar spectrum in both shape and overall flux level. The data for individual objects conform to these results. The trend of the silicate depth to increase with decreasing core fraction of the radio source further supports that for this sample, orientation is the main driver for the difference between radio galaxies and quasars, as predicted by AGN unification. However, comparing our high-z sample with lower redshift 3CRR objects reveals that the absorption of the high-z radio galaxy MIR continuum is lower than expected from a scaled up version of lower luminosity sources, and we discuss some effects that may explain these trends.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا