The Rapid Telescopes for Optical Response (RAPTOR) experiment is a spatially distributed system of autonomous robotic telescopes that is designed to monitor the sky for optical transients. The core of the system is composed of two telescope arrays, separated by 38 kilometers, that stereoscopically view the same 1500 square-degree field with a wide-field imaging array and a central 4 square-degree field with a more sensitive narrow-field fovea imager. Coupled to each telescope array is a real-time data analysis pipeline that is designed to identify interesting transients on timescales of seconds and, when a celestial transient is identified, to command the rapidly slewing robotic mounts to point the narrow-field ``fovea imagers at the transient. The two narrow-field telescopes then image the transient with higher spatial resolution and at a faster cadence to gather light curve information. Each fovea camera also images the transient through a different filter to provide color information. This stereoscopic monitoring array is supplemented by a rapidly slewing telescope with a low resolution spectrograph for follow-up observations of transients and a sky patrol telescope that nightly monitors about 10,000 square-degrees for variations, with timescales of a day or longer, to a depth about 100 times fainter. In addition to searching for fast transients, we will use the data stream from RAPTOR as a real-time sentinel for recognizing important variations in known sources. Altogether, the RAPTOR project aims to construct a new type of system for discovery in optical astronomy--one that explores the time domain by mining the sky in real time.