Do you want to publish a course? Click here

Circumnuclear regions in barred spiral galaxies II. Relations to host galaxies

203   0   0.0 ( 0 )
 Added by Johan H. Knapen
 Publication date 2002
  fields Physics
and research's language is English
 Authors J. H. Knapen




Ask ChatGPT about the research

We present optical broad- and narrow-band imaging of a sample of a dozen barred galaxies. These images are analyzed in conjunction with our previously published near-infrared imaging of their central regions and with literature values for, e.g., bar strengths and the total star formation activity of the galaxies. We present B, I and H alpha images, and radial profiles derived from these, to infer geometric and dynamical parameters of the structural components of the galaxies, such as bar lengths, bar ellipticities, and location of star formation and dust. We find that the more centrally concentrated the H alpha emission in a galaxy is, i.e., the higher the fraction of star formation originating in the circumnuclear region, the higher the overall star formation rate, as measured from far-infrared flux ratios. Stronger bars host smaller nuclear rings, but the strength of the bar does not correlate with either the intrinsic ellipticity of the ring or the offset between the position angles of the bar and the ring. We interpret these results in comparison with modelling of gas inflow in the circumnuclear region, and show that they were theoretically expected. We confirm observationally, and for the first time, the anti-correlation predicted from theory and modelling between the degree of curvature of the bar dust lanes and the strength of the bar, where stronger bars have straighter dust lanes.



rate research

Read More

We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions have been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two different kinematical components in the ionized gas of the regions. The narrow component of the two-component Gaussian fits seem to have a relatively constant value for all the studied CNSFRs, with estimated values close to 25 km/s. This narrow component could be identified with ionized gas in a rotating disc, while the stars and the fraction of the gas (responsible for the broad component) related to the star-forming regions would be mostly supported by dynamical pressure.
Using HST, we identify circumnuclear ($100$-$500$ pc scale) structures in nine new H$_2$O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. (2013) and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve $<200$ pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the $sim100$ pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.
Optical red spectra of a set of 18 bright barred spiral galaxies are presented. The study is aimed at determining the local kinematics, and the physical conditions of ionized gas in the compact nucleus (inside a diameter of 5) and in the circumnuclear regions (inside a diameter of 20). Only 8 galaxies showed bright emission from their east and west side of the nucleus. The spectrum of each region was analized separately. In other 10 galaxies the line emission was so weak that we were only able to obtain an average spectrum of the central emission. No emission was detected in the remaining 8 galaxies. An estimate of the dynamical mass is presented based on the observed velocities in the circumnuclear regions. In NGC 4314 and NGC 6951, that show H_alpha emission distributed in circumnuclear ring structures, we determine the [NII]/H_alpha and [SII]/H_alpha ratios for the eastern and western regions of the rings. The velocity difference for the two sides is used to derive the rotation velocity of the gas around the compact nucleus. The ratio [NII]6583/H_alpha is a factor of 2 larger in the compact nucleus of NGC 6951 than in its western side. The electron gas densities have been estimated from the [SII] lines ratio.
157 - N. Kuno , N. Sato , H. Nakanishi 2007
The data from a CO(1 - 0) mapping survey of 40 nearby spiral galaxies performed with the Nobeyama 45-m telescope are presented. The criteria of the sample selection were (1) RC3 morphological type in the range Sa to Scd, (2) distance less than 25 Mpc, (3) inclination angle less than 79deg (RC3), (4) flux at 100 um higher than ~ 10 Jy, (5) spiral structure is not destroyed by interaction. The maps of CO cover most of the optical disk of the galaxies. We investigated the influence of bar on the distribution of molecular gas in spiral galaxies using these data. We confirmed that the degree of central concentration is higher in barred spirals than in non-barred spirals as shown by the previous works. Furthermore, we present an observational evidence that bars are efficient in driving molecular gas that lies within the bar length toward the center, while the role in bringing gas in from the outer parts of the disks is small. The transported gas accounts for about half of molecular gas within the central region in barred spiral galaxies. We found a correlation between the degree of central concentration and bar strength. Galaxies with stronger bars tend to have higher central concentration. The correlation implies that stronger bars accumulate molecular gas toward the center more efficiently. These results are consistent with long-lived bars.
We construct a large data set of global structural parameters for 1300 field and cluster spiral galaxies and explore the joint distribution of luminosity L, optical rotation velocity V, and disk size R at I- and 2MASS K-bands. The I- and K-band velocity-luminosity (VL) relations have log-slopes of 0.29 and 0.27, respectively with sigma_ln(VL)~0.13, and show a small dependence on color and morphological type in the sense that redder, early-type disk galaxies rotate faster than bluer, later-type disk galaxies for most luminosities. The VL relation at I- and K-bands is independent of surface brightness, size and light concentration. The log-slope of the I- and K-band RL relations is a strong function of morphology and varies from 0.25 to 0.5. The average dispersion sigma_ln(RL) decreases from 0.33 at I-band to 0.29 at K, likely due to the 2MASS selection bias against lower surface brightness galaxies. Measurement uncertainties are sigma_ln(V)~0.09, sigma_ln(L)~0.14 and somewhat larger and harder to estimate for ln(R). The color dependence of the VL relation is consistent with expectations from stellar population synthesis models. The VL and RL residuals are largely uncorrelated with each other; the RV-RL residuals show only a weak positive correlation. These correlations suggest that scatter in luminosity is not a significant source of the scatter in the VL and RL relations. The observed scaling relations can be understood in the context of a model of disk galaxies embedded in dark matter halos that invokes low mean spin parameters and dark halo expansion, as we describe in our companion paper (Dutton et al. 2007). We discuss in two appendices various pitfalls of standard analytical derivations of galaxy scaling relations, including the Tully-Fisher relation with different slopes. (Abridged).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا