Do you want to publish a course? Click here

A test for the search for life on extrasolar planets: Looking for the terrestrial vegetation signature in the Earthshine spectrum

70   0   0.0 ( 0 )
 Added by Luc Arnold
 Publication date 2002
  fields Physics
and research's language is English
 Authors L. Arnold




Ask ChatGPT about the research

We report spectroscopic observations (400 to 800nm, R = approx 100) of Earthshine in June, July and October 2001 from which normalised Earth albedo spectra have been derived. The resulting spectra clearly show the blue colour of the Earth due to Rayleigh diffusion in its atmosphere. They also show the signatures of oxygen, ozone and water vapour. We tried to extract from these spectra the signature of Earth vegetation. A variable signal (4 to 10 +/-3%) around 700nm has been measured in the Earth albedo. It is interpreted as being due to the vegetation red edge, expected to be between 2 to 10% of the Earth albedo at 700nm, depending on models. We discuss the primary goal of the present observations: their application to the detection of vegetation-like biosignatures on extrasolar planets.



rate research

Read More

165 - Luc Arnold 2007
The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planets atmosphere ($O_2$, $O_3$, $CO_2$ etc.) have been identified as possible global biomarkers, we review here the detectability of a signature of life from the planets surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the Vegetation Red Edge (VRE). Moreover vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus considering it as a potential global biomarker is relevant. Earthshine allows to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The egetation spectral signature is detected as a small positive shift of a few percents above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earths phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, moreover considering the possibility of mineral artifacts and the question of red edge universality in the Universe.
The discovery of extra-solar planets is one of the greatest achievements of modern astronomy. The detection of planets with a wide range of masses demonstrates that extra-solar planets of low mass exist. In this paper we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines including astrophysics, planetary sciences, chemistry and microbiology. Darwin is designed to detect and perform spectroscopic analysis of rocky planets similar to the Earth at mid-infrared wavelengths (6 - 20 micron), where an advantageous contrast ratio between star and planet occurs. The baseline mission lasts 5 years and consists of approximately 200 individual target stars. Among these, 25 to 50 planetary systems can be studied spectroscopically, searching for gases such as CO2, H2O, CH4 and O3. Many of the key technologies required for the construction of Darwin have already been demonstrated and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.
The vegetations ``red edge, an intensity bump in the Earths spectrum near 700 $nm$ when sunlight is reflected from greenery, is often suggested as a tool in the search for life in terrestrial-like extrasolar planets. Here, through ground-based observations of the Earths spectrum, satellite observations of clouds, and an advanced atmospheric radiative transfer code, we determine the temporal evolution of the vegetation signature of Earth. The excellent agreement between models and observations motivated us to probe more deeply into the red edge detectability using real cloud observations at longer time scales. Overall, we find the evolution of the red edge signal in the globally-averaged spectra to be weak, and only attributable to vegetation changes when the real land and cloud distributions for the day are known. However, it becomes prominent under certain Sun-Earth-Moon orbital geometries, which are applicable to the search for life in extrasolar planets. Our results indicate that vegetation detection in Earth-like planets will require a considerable level of instrumental precision and will be a difficult task, but not as difficult as the normally weak earthshine signal might seem to suggest.
We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the $H$ and $K_{S}$ bands using HiCIAO combined with the adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the $H$ band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch image, but the precision of its proper motion was not sufficient to conclude whether it was background object. Four other candidates are waiting for second epoch observations to determine their proper motion. Finally, the remaining 2 were confirmed to be 60 $M_{J}$ brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5) respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the $H$ band beyond 1.5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50--1000 AU. For this we extrapolated the distribution of planet mass and semi-major axis derived from RV observations and adopted the planet evolution model of Baraffe et al. (2003). As there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% ($2sigma$) around one star of the Pleiades cluster.
204 - G. Mallen-Ornelas 2002
(Abridged) We discuss the design considerations of the EXPLORE (EXtra-solar PLanet Occultation REsearch) project, a series of transiting planet searches using 4-m-class telescopes to continuously monitor a single field of stars in the Galactic Plane in each ~2 week observing campaign. We discuss the general factors which determine the efficiency and the number of planets found by a transit search, including time sampling strategy and field selection. The primary goal is to select the most promising planet candidates for radial velocity follow-up observations. We show that with very high photometric precision light curves that have frequent time sampling and at least two detected transits, it is possible to uniquely solve for the main parameters of the eclipsing system (including planet radius) based on several important assumptions about the central star. Together with a measured spectral type for the star, this unique solution for orbital parameters provides a powerful method for ruling out most contaminants to transiting planet candidates. For the EXPLORE project, radial velocity follow-up observations for companion mass determination of the best candidates are done on 8-m-class telescopes within two or three months of the photometric campaigns. This same-season follow-up is made possible by the use of efficient pipelines to produce high quality light curves within weeks of the observations. We conclude by presenting early results from our first search, EXPLORE I, in which we reached <1% rms photometric precision (measured over a full night) on ~37,000 stars to I <= 18.2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا