Do you want to publish a course? Click here

Photoevaporation of Clumps in Photodissociation Regions

98   0   0.0 ( 0 )
 Added by Uma Gorti
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in Photodissociation regions (PDRs) undergo external heating which, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to its initial colunm density, the temperature of the heated surface and the ratio of the ``turn-on time $t_{FUV}$ of the heating flux on a clump to its initial sound crossing-time $t_{c}$. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the evolution of turbulence-generated and pressure-confined clumps in PDRs. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photoevaporation timescales, $sim 10^{4-5}$ years for a 1 M$_{odot}$ clump in a typical star-forming region. Clumps that are confined by an interclump medium may either get completely photoevaporated, or may preserve a shielded core with a warm, dissociated, protective shell that absorbs the incident FUV flux. We compare our results with observations of some well-studied PDRs: the Orion Bar, M17SW, NGC 2023 and the Rosette Nebula. The data are consistent with both interpretations of clump origin, with a slight indication for favouring the turbulent model for clumps over pressure-confined clumps.



rate research

Read More

We study the photoevaporation of Jeans-unstable molecular clumps by isotropic FUV (6 eV $< {rm h} u$ < 13.6 eV) radiation, through 3D radiative transfer hydrodynamical simulations implementing a non-equilibrium chemical network that includes the formation and dissociation of H$_2$. We run a set of simulations considering different clump masses ($M=10-200$ M$_odot$) and impinging fluxes ($G_0=2times 10^3-8times 10^4$ in Habing units). In the initial phase, the radiation sweeps the clump as an R-type dissociation front, reducing the H$_2$ mass by a factor 40-90%. Then, a weak ($mathcal{M}simeq 2$) shock develops and travels towards the centre of the clump, which collapses while loosing mass from its surface. All considered clumps remain gravitationally unstable even if radiation rips off most of the clump mass, showing that external FUV radiation is not able to stop clump collapse. However, the FUV intensity regulates the final H$_2$ mass available for star formation: for example, for $G_0 < 10^4$ more than 10% of the initial clump mass survives. Finally, for massive clumps ($sim 100$ M$_odot$) the H$_2$ mass increases by 25-50% during the collapse, mostly because of the rapid density growth that implies a more efficient H$_2$ self-shielding.
Recent studies have confirmed the presence of buckminsterfullerene (C$_{60}$) in different interstellar and circumstellar environments. However, several aspects regarding C$_{60}$ in space are not well understood yet, such as the formation and excitation processes, and the connection between C$_{60}$ and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper we study several photodissociation regions (PDRs) where C$_{60}$ and PAHs are detected and the local physical conditions are reasonably well constrained, to provide observational insights into these questions. C$_{60}$ is found to emit in PDRs where the dust is cool ($T_d = 20-40$ K) and even in PDRs with cool stars. These results exclude the possibility for C$_{60}$ to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C$_{60}$ emission are spatially uncorrelated and that C$_{60}$ is present in PDRs where the physical conditions (in terms of radiation field and hydrogen density) allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also find trends indicative of an increase in C$_{60}$ abundance within individual PDRs, but these trends are not universal. These results support models where the dehydrogenation of carbonaceous species is the first step towards C$_{60}$ formation. However, this is not the only parameter involved and C$_{60}$ formation is likely affected by shocks and PDR age.
249 - Yoko Okada 2005
We have made one-dimensional raster-scan observations of the rho Oph and sigma Sco star-forming regions with two spectrometers (SWS and LWS) on board the ISO. In the rho Oph region, [SiII] 35um, [OI] 63um, 146um, [CII] 158um, and the H2 pure rotational transition lines S(0) to S(3) are detected, and the PDR properties are derived as the radiation field scaled by the solar neighborhood value G_0~30-500, the gas density n~250--2500 /cc, and the surface temperature T~100-400 K. The ratio of [SiII] 35um to [OI] 146um indicates that silicon of 10--20% of the solar abundance must be in the gaseous form in the photodissociation region (PDR), suggesting that efficient dust destruction is undergoing even in the PDR and that part of silicon atoms may be contained in volatile forms in dust grains. The [OI] 63um and [CII] 158um emissions are too weak relative to [OI] 146um to be accounted for by standard PDR models. We propose a simple model, in which overlapping PDR clouds along the line of sight absorb the [OI] 63um and [CII] 158um emissions, and show that the proposed model reproduces the observed line intensities fairly well. In the sigma Sco region, we have detected 3 fine-structure lines, [OI] 63um, [NII] 122um, and [CII] 158um, and derived that 30-80% of the [CII] emission comes from the ionized gas. The upper limit of the [SiII] 35um is compatible with the solar abundance relative to nitrogen and no useful constraint on the gaseous Si is obtained for the sigma Sco region.
We derive total (atomic + molecular) hydrogen densities in giant molecular clouds (GMCs) in the nearby spiral galaxy M33 using a method that views the atomic hydrogen near regions of recent star formation as the product of photodissociation. Far-UV photons emanating from a nearby OB association produce a layer of atomic hydrogen on the surfaces of nearby GMCs. Our approach provides an estimate of the total hydrogen density in these GMCs from observations of the excess far-UV emission that reaches the GMC from the OB association, and the excess 21-cm radio HI emission produced after these far-UV photons convert H2 into HI on the GMC surface. The method provides an alternative approach to the use of CO emission as a tracer of H2 in GMCs, and is especially sensitive to a range of density well below the critical density for CO(1-0) emission. We describe our PDR method in more detail and apply it using GALEX far-UV and VLA 21-cm radio data to obtain volume densities in a selection of GMCs in the nearby spiral galaxy M33. We have also examined the sensitivity of the method to the linear resolution of the observations used; the results obtained at 20 pc are similar to those for the larger set of data at 80 pc resolution. The cloud densities we derive range from 1 to 500 cm-3, with no clear dependence on galactocentric radius; these results are generally similar to those obtained earlier in M81, M83, and M101 using the same method.
181 - Janet P. Simpson 2021
Sgr B1 is a luminous H II region in the Galactic Center immediately next to the massive star-forming giant molecular cloud Sgr B2 and apparently connected to it from their similar radial velocities. In 2018 we showed from SOFIA FIFI-LS observations of the [O III] 52 and 88 micron lines that there is no central exciting star cluster and that the ionizing stars must be widely spread throughout the region. Here we present SOFIA FIFI-LS observations of the [O I] 146 and [C II] 158 micron lines formed in the surrounding photodissociation regions (PDRs). We find that these lines correlate neither with each other nor with the [O III] lines although together they correlate better with the 70 micron Herschel PACS images from Hi-GAL. We infer from this that Sgr B1 consists of a number of smaller H II regions plus their associated PDRs, some seen face-on and the others seen more or less edge-on. We used the PDR Toolbox to estimate densities and the far-ultraviolet intensities exciting the PDRs. Using models computed with Cloudy, we demonstrate possible appearances of edge-on PDRs and show that the density difference between the PDR densities and the electron densities estimated from the [O III] line ratios is incompatible with pressure equilibrium unless there is a substantial pressure contribution from either turbulence or magnetic field or both. We likewise conclude that the hot stars exciting Sgr B1 are widely spaced throughout the region at substantial distances from the gas with no evidence of current massive star formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا