Complex shock structure in the western hot-spot of Pictor A


Abstract in English

We have carried out simulations of supersonic light jets in order to model the features observed in optical and radio images of the western hot-spot in the radio galaxy Pictor A. We have considered jets with density ratios eta=1e-2 - 1e-4, and Mach numbers ranging between 5 and 50. From each simulation, we have generated ray-traced maps of radio surface brightness at a variety of jet inclinations, in order to study the appearance of time-dependent luminous structures in the vicinity of the western hot-spot. We compare these rendered images with observed features of Pictor A. A remarkable feature of Pictor A observations is a bar-shaped filament inclined almost at right angles to the inferred jet direction and extending 24 (10.8 /h kpc) along its longest axis. The constraints of reproducing the appearance of this structure in simulations indicate that the jet of Pictor A lies nearly in the plane of the sky. The results of the simulation are also consistent with other features found in the radio image of Pictor A. This filament arises from the surging behaviour of the jet near the hot-spot; the surging is provoked by alternate compression and decompression of the jet by the turbulent backflow in the cocoon. We also examine the arguments for the jet in Pictor A being at a more acute angle to the line of sight and find that our preferred orientation is just consistent with the limits on the brightness ratio of the X-ray jet and counter-jet. We determine from our simulations, the structure function of hot-spot brightness and also the cumulative distribution of the ratio of intrinsic hot-spot brightnesses. The latter may be used to quantify the use of hot-spot ratios for the estimation of relativistic effects.

Download