Theoretical models for Bump Cepheids


Abstract in English

We present the results of a theoretical investigation aimed at testing whether full amplitude, nonlinear, convective models account for the I-band light curves of Bump Cepheids in the Large Magellanic Cloud (LMC). We selected two objects from the OGLE sample that show a well-defined bump along the decreasing (short-period) and the rising (long-period) branch respectively. We find that current models do reproduce the luminosity variation over the entire pulsation cycle if the adopted stellar mass is roughly 15 % smaller than predicted by evolutionary models that neglect both mass loss and convective core overshooting. Moreover, we find that the fit to the light curve of the long-period Cepheid located close to the cool edge of the instability strip requires an increase in the mixing length from 1.5 to 1.8 Hp. This suggests an increase in the efficiency of the convective transport when moving toward cooler effective temperatures. Current pulsation calculations supply a LMC distance modulus ranging from 18.48 to 18.58 mag.

Download