A Uniform Analysis of the Ly-alpha Forest at z=0 - 5: V. The extragalactic ionizing background at low redshift


Abstract in English

In Paper III of our series A Uniform Analysis of the Ly-alpha forest at z=0 - 5, we presented a set of 270 quasar spectra from the archives of the Faint Object Spectrograph on the Hubble Space Telescope. A total of 151 of these spectra, yielding 906 lines, are suitable for using the proximity effect signature to measure J( u_0), the mean intensity of the hydrogen-ionizing background radiation field, at low redshift. Using a maximum likelihood technique and the best estimates possible for each QSOs Lyman limit flux and systemic redshift, we find J( u_0)= 7.6^+9.4_-3.0 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1 at at 0.03 < z < 1.67. This is in good agreement with the mean intensity expected from models of the background which incorporate only the known quasar population. When the sample is divided into two subsamples, consisting of lines with z < 1 and z > 1, the values of J( u_0) found are 6.5^+38._-1.6 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1, and 1.0^+3.8_-0.2 x 10^-22 ergs s^-1 cm^-2 Hz^-1 sr^-1, respectively, indicating that the mean intensity of the background is evolving over the redshift range of this data set. Relaxing the assumption that the spectral shapes of the sample spectra and the background are identical, the best fit HI photoionization rates are found to be 6.7 x 10^-13 s^-1 for all redshifts, and 1.9 x 10^-13 s^-1 and 1.3 x 10^-12 s^-1 for z < 1 and z > 1, respectively. This work confirms that the evolution of the number density of Ly-alpha lines is driven by a decrease in the ionizing background from z ~ 2 to z ~ 0 as well as by the formation of structure in the intergalactic medium. (Abridged)

Download