The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR


Abstract in English

A large fraction of the present-day stellar mass was formed between z=0.5 and z~3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously} obtain images of objects with typical sizes as small as 1-2kpc(~0.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60th Zernike modes. Simulations on real extragalactic fields, show that for most sources (>80%), the recovered resolution could reach 0.15-0.25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to >10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equiped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes.

Download