Do you want to publish a course? Click here

Protostellar Evolution during Time Dependent, Anisotropic Collapse

53   0   0.0 ( 0 )
 Added by Jason D. Fiege
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The formation and collapse of a protostar involves the simultaneous infall and outflow of material in the presence of magnetic fields, self-gravity, and rotation. We use self-similar techniques to self-consistently model the anisotropic collapse and outflow by a set of angle-separated self-similar equations. The outflow is quite strong in our model, with the velocity increasing in proportion to radius, and material formally escaping to infinity in the finite time required for the central singularity to develop. Analytically tractable collapse models have been limited mainly to spherically symmetric collapse, with neither magnetic field nor rotation. Other analyses usually employ extensive numerical simulations, or either perturbative or quasistatic techniques. Our model is unique as an exact solution to the non-stationary equations of self-gravitating MHD, which features co-existing regions of infall and outflow. The velocity and magnetic topology of our model is quadrupolar, although dipolar solutions may also exist. We provide a qualitative model for the origin and subsequent evolution of such a state. However, a central singularity forms at late times, and we expect the late time behaviour to be dominated by the singularity rather than to depend on the details of its initial state. Our solution may, therefore, have the character of an attractor among a much more general class of self-similarity.



rate research

Read More

The dynamics of dust and gas can be quite different from each other when the dust is poorly coupled to the gas. In protoplanetary discs, it is well known that this decoupling of the dust and gas can lead to diverse spatial structures and dust-to-gas ratios. In this paper, we study the dynamics of dust and gas during the earlier phase of protostellar collapse, before a protoplanetary disc is formed. We find that for dust grains with sizes < 10 micron, the dust is well coupled during the collapse of a rotating, pre-stellar core and there is little variation of the dust-to-gas ratio during the collapse. However, if larger grains are present, they may have trajectories that are very different from the gas during the collapse, leading to mid-plane settling and/or oscillations of the dust grains through the mid-plane. This may produce variations in the dust-to-gas ratio and very different distributions of large and small dust grains at the very earliest stages of star formation, if large grains are present in pre-stellar cores.
50 - A.-K. Jappsen 2004
Using hydrodynamic simulations we investigate the rotational properties and angular momentum evolution of prestellar and protostellar cores formed from gravoturbulent fragmentation of interstellar gas clouds. We find the specific angular momentum j of prestellar cloud cores in our models to be on average comparable to the observed values. A fraction of prestellar cores is gravitationally unstable and goes into collapse to build up protostars and protostellar systems. Their specific angular momentum is one order of magnitude lower than their parental cores and in agreement with observations of main-sequence binaries. The ratio of rotational to gravitational energy of protostellar cores in the model turns out to be very similar to the observed values. We find, that it is roughly conserved during the main collapse phase. This leads to j proportional to M^{2/3}, where j is specific angular momentum and M core mass. Although the temporal evolution of the angular momentum of individual protostars or protostellar systems is complex and highly time variable, this correlation holds well in a statistical sense for a wide range of turbulent environmental parameters. In addition, high turbulent Mach numbers result in the formation of more numerous protostellar cores with, on average, lower mass. Therefore, models with larger Mach numbers result in cores with lower specific angular momentum. We find, however, no dependence on the spatial scale of the turbulence. Our models predict a close correlation between the angular momentum vectors of neighboring protostars during their main accretion phase. Possible observational signatures are aligned disks and parallel outflows. The latter are indeed observed in some low-mass isolated Bok globules.
153 - Daniel Harsono 2013
(Abridged) Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage are investigated. Semi-analytic 2D axisymmetric models have been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures and CO abundance structure. We present non-LTE near-IR, FIR, and submm lines of CO have been simulated at a number of time steps. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR lines does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel and from ground-based telescopes. The near-IR spectra provide complementary information to the submm lines by probing not only the cold outer envelope but also the warm inner region. The near-IR high-J (>8) absorption lines are particularly sensitive to the physical structure of the inner few AU, which does show evolution. High signal-to-noise ratio subarcsec resolution data with ALMA are needed to detect the presence of small rotationally supported disks during the Stage 0 phase and various diagnostics are discussed.
We investigate protostellar collapse of molecular cloud cores by numerical simulations, taking into account turbulence and magnetic fields. By using the adaptive mesh refinement technique, the collapse is followed over a wide dynamic range from the scale of a turbulent cloud core to that of the first core. The cloud core is lumpy in the low density region owing to the turbulence, while it has a smooth density distribution in the dense region produced by the collapse. The shape of the dense region depends mainly on the mass of the cloud core; a massive cloud core tends to be prolate while a less massive cloud core tends to be oblate. In both cases, anisotropy of the dense region increases during the isothermal collapse. The minor axis of the dense region is always oriented parallel to the local magnetic field. All the models eventually yield spherical first cores supported mainly by the thermal pressure. Most of turbulent cloud cores exhibit protostellar outflows around the first cores. These outflows are classified into two types, bipolar and spiral flows, according to the morphology of the associated magnetic field. Bipolar flow often appears in the less massive cloud core. The rotation axis of the first core is oriented parallel to the local magnetic field for bipolar flow, while the orientation of the rotation axis from the global magnetic field depends on the magnetic field strength. In spiral flow, the rotation axis is not aligned with the local magnetic field.
145 - V. G. Kogan , R. Prozorov 2020
The anisotropic London equations taking into account the normal currents are derived and applied to the problem of the surface impedance in the Meisner state of anisotropic materials. It is shown that the complex susceptibility of anisotropic slab depends on the orientation of the applied microwave field relative to the crystal axes. In particular, the anisotropic sample in the microwave field is subject to a torque, unless the field is directed along with one of the crystal principle axes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا