Do you want to publish a course? Click here

Low-Ionization BAL QSOs in Ultraluminous Infrared Systems

110   0   0.0 ( 0 )
 Added by Gabriela Canalizo
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-ionization broad absorption line (BAL) QSOs present properties that cannot generally be explained by simple orientation effects. We have conducted a deep spectroscopic and imaging study of the host galaxies of the only four BAL QSOs that are currently known at z < 0.4, and found that all four objects reside in dusty, starburst or post-starburst, merging systems. The starburst ages derived from modeling the stellar populations are in every case a few hundred million years or younger. There is strong evidence that the ongoing mergers triggered both the starbursts and the nuclear activity, thus indicating that the QSOs have been recently triggered or rejuvenated. The low-ionization BAL phenomenon then appears to be directly related to young systems, and it may represent a short-lived stage in the early life of a large fraction of QSOs.



rate research

Read More

We have embarked upon a project to model the UV spectra of BALQSOs using a Monte Carlo radiative transfer code previously validated through modelling of the winds of cataclysmic variable stars (e.g. Noebauer et al. 2010). We intend to use the simulations to investigate the plausibility of geometric unification (e.g. Elvis 2000) of the different classes of QSO. Here we introduce the code, and present some initial results. These demonstrate that for reasonable geometries and mass loss rates we are able to produce synthetic spectra which reproduce the important features of observed BALQSO spectra.
We compile a large sample of broad absorption lines (BAL) quasars with X-ray observations from the xmm archive data and Sloan Digital Sky Survey Data Release 5. The sample consists of 41 BAL QSOs. Among 26 BAL quasars detected in X-ray, spectral analysis is possible for twelve objects. X-ray absorption is detected in all of them. Complementary to that of citet{gall06} (thereafter G06), our sample spans wide ranges of both BALnicity Index (BI) and maximum outflow velocity (vmax). Combining our sample with G06s, we find very significant correlations between the intrinsic X-ray weakness with both BALnicity Index (BI) and the maximum velocity of absorption trough. We do not confirm the previous claimed correlation between absorption column density and broad absorption line parameters. We tentatively interpret this as that X-ray absorption is necessary to the production of the BAL outflow, but the properties of the outflow are largely determined by intrinsic SED of the quasars.
110 - Carol Lonsdale 2006
Ever since their discovery in the 1970s, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measure. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.
223 - A. Georgakakis 2010
We explore the nature of Infrared Excess sources (IRX), which are proposed as candidates for luminous L_X(2-10keV)>1e43erg/s Compton Thick (N_H>2e24cm^{-2}$) QSOs at z~2. Lower redshift, z~1, analogues of the distant IRX population are identified by firstly redshifting to z=2 the SEDs of all sources with secure spectroscopic redshifts in the AEGIS (6488) and the GOODS-North (1784) surveys and then selecting those that qualify as IRX sources at that redshift. A total of 19 galaxies are selected. The mean redshift of the sample is $zapprox1$. We do not find strong evidence for Compton Thick QSOs in the sample. For 9 sources with X-ray counterparts, the X-ray spectra are consistent with Compton Thin AGN. Only 3 of them show tentative evidence for Compton Thick obscuration. The SEDs of the X-ray undetected population are consistent with starburst activity. There is no evidence for a hot dust component at the mid-infrared associated with AGN heated dust. If the X-ray undetected sources host AGN, an upper limit of L_X(2-10keV) =1e43erg/s is estimated for their intrinsic luminosity. We propose that a large fraction of the $zapprox2$ IRX population are not Compton Thick QSOs but low luminosity [L_X(2-10keV)<1e43erg/s], possibly Compton Thin, AGN or dusty starbursts. It is shown that the decomposition of the AGN and starburst contribution to the mid-IR is essential for interpreting the nature of this population, as star-formation may dominate this wavelength regime.
It is shown that all of the 32 point X-ray sources which lie within about 10 of the centre of nearby galaxies, and which have so far been optically identified are high redshift objects - AGN or QSOs. Thus the surface density of these QSOs p similar or equal to 0.1 per square arc minute. Some of them were originally discovered as X-ray sources and classified as ultraluminous X-ray sources (ULXs), nearly all of which lie near the centers of active galaxies. We demonstrate that this concentration around galactic nuclei is of high statistical significance: the probabiliy that p that they are accidental lies in the range one in a thousand to one in ten thousand, and apparently this excess cannot be accounted for by microlensing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا