Do you want to publish a course? Click here

Ultra-compact dwarf galaxies: a new class of compact stellar system discovered in the Fornax Cluster

70   0   0.0 ( 0 )
 Added by Michael Drinkwater
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, Bj= 16.5 to 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Among the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.



rate research

Read More

By utilising the large multi-plexing advantage of the 2dF spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5<Bj<19.7, regardless of morphology, in an area towards the centre of the Fornax Cluster of galaxies. Among the unresolved or marginally resolved targets we have found five objects which are actually at the redshift of the Fornax Cluster, i.e. they are extremely compact dwarf galaxies or extremely large star clusters. All five have absorption line spectra. With intrinsic sizes less than 1.1 arc second HWHM (corresponding to approximately 100 pc at the distance of the cluster), they are more compact and significantly less luminous than other known compact dwarf galaxies, yet much brighter than any globular cluster. In this letter we present new ground based optical observations of these enigmatic objects. In addition to having extremely high central surface brightnesses, these objects show no evidence of any surrounding low surface brightness envelopes down to much fainter limits than is the case for, e.g., nucleated dwarf ellipticals. Thus, if they are not merely the stripped remains of some other type of galaxy, then they appear to have properties unlike any previously known type of stellar system.
Our VLT (FLAMES) observations near NGC1399 investigate the connection between ultra-compact dwarf galaxies (UCDs), NGC1399 globular clusters and intra-cluster globulars. We have uncovered 30 faint compact stellar systems in the Fornax galaxy cluster, adding to 62 bright UCDs previously reported. The magnitude limit of these stellar systems extends down to the globular cluster domain. We detect a filament of UCDs and globular clusters stretching across NGC1399 and find weak evidence for its rotation. These compact stellar systems not only congregate around several cluster galaxies but are also widely distributed through intra-cluster space.
Aims. We determine masses and mass-to-light ratios of five ultra-compact dwarf galaxies and one dwarf elliptical nucleus in the Fornax cluster from high resolution spectroscopy. Methods. Velocity dispersions were derived from selected wavelength regions using a direct-fitting method. To estimate the masses of the UCDs a new modelling program has been developed that allows a choice of different representations of the surface brightness profile (i.e. Nuker, Sersic or King laws) and corrects the observed velocity dispersions for observational parameters (i.e. seeing, slit size). Results. The observed velocity dispersions range between 22 and 30 km/s. The resulting masses are between 1.8 and 9.5x10^7M_sun. These, as well as the central and global projected velocity dispersions, were derived from the generalized King model which turned out to give the most stable results. The masses of two UCDs, that are best fitted by a two-component profile, were derived from a combined King+Sersic model. The mass-to-light ratios of the Fornax UCDs range between 3 and 5 (M/L_V)_sun. Within 1-2 half-mass radii dark matter is not dominating UCDs. Conclusions. We show that the mass-to-light ratios of UCDs in Fornax are consistent with those expected for pure stellar populations. Thus UCDs seem to be the result of cluster formation processes within galaxies rather than being compact dark matter dominated substructures themselves. Whether UCDs gained their mass in super-star cluster complexes of mergers or in nuclear star cluster formation processes remains an open question. It appears, however, clear that star clusters more massive than about 5times10^6M_sun exhibit a more complex formation history than the less massive `ordinary globular clusters.
231 - Michael Hilker 2015
Most ultra-compact dwarf galaxies (UCDs) and very massive globular clusters reside in nearby galaxy clusters or around nearby giant galaxies. Due to their distance (>Mpc) and compactness (r_eff<100pc) they are barely resolved, and thus it is difficult to obtain their internal properties. Here I present our most recent attempts to constrain the mass function, stellar content and dynamical state of UCDs in the Fornax cluster. Thanks to radial velocity membership assignment of ~950 globular clusters (GCs) and UCDs in the core of Fornax, the shape of their mass function is well constrained. It is consistent with the standard Gaussian mass function of GCs. Our recent simulations on the disruption process of nucleated dwarf galaxies in cluster environments showed that ~40% of the most massive UCDs should originate from nuclear star clusters. Some Fornax UCDs actually show evidence for this scenario, as revealed by extended low surface brightness disks around them and onsets of tidal tails. Multi-band UV to optical imaging as well as low to medium resolution spectroscopy revealed that there exist UCDs with youngish ages, (sub-)solar [alpha/Fe] abundances, and probably He-enriched populations.
We present preliminary results of the search for Ultra-compact dwarf galaxies in the central region of the Antlia cluster. This new kind of stellar system has brightness, mass and size between those observed in globular clusters and early-type dwarf galaxies, but their origin is not well understood yet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا