Do you want to publish a course? Click here

Four years of Ulysses dust data: 1996 to 1999

248   0   0.0 ( 0 )
 Added by Harald Krueger
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($ i = 79^{circ}$, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and crossed the ecliptic plane at aphelion in May 1998. In this four-year period 218 dust impacts were recorded with the dust detector on board. We publish and analyse the complete data set of both raw and reduced data for particles with masses $rm 10^{-16} g$ to $rm 10^{-8}$ g. Together with 1477 dust impacts recorded between launch of Ulysses and the end of 1995 published earlier cite{gruen1995c,krueger1999b}, a data set of 1695 dust impacts detected with the Ulysses sensor between October 1990 and December 1999 is now available. The impact rate measured between 1996 and 1999 was relatively constant with about 0.2 impacts per day. The impact direction of the majority of the impacts is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. The observed impact rate is compared with a model for the flux of interstellar dust particles. The flux of particles several micrometers in size is compared with the measurements of the dust instruments on board Pioneer 10 and Pioneer 11 beyond 3 AU (Humes 1980, JGR, 85, 5841--5852, 1980). Between 3 and 5 AU, Pioneer results predict that Ulysses should have seen five times more ($rm sim 10 mu m$ sized) particles than actually detected.



rate research

Read More

The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse since it encountered Jupiter in February 1992. Since then it made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-board dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10^-16 g <= m <= 10^-7 g, bringing the mission total to 6719 dust data sets. The impact rate varied from a low value of 0.3 per day at high ecliptic latitudes to 1.5 per day in the inner solar system. The impact direction of the majority of impacts between 2005 and 2007 is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. We compare the interstellar dust measurements from 2005/2006 with the data obtained during earlier periods (1993/1994) and (1999/2000) when Ulysses was traversing the same spatial region at southern ecliptic latitudes but the solar cycle was at a different phase. During these three intervals the impact rate of interstellar grains varied by more than a factor of two. Furthermore, in the two earlier periods the grain impact direction was in agreement with the flow direction of the interstellar helium while in 2005/2006 we observed a shift in the approach direction of the grains by approximately 30 deg away from the ecliptic plane. The reason for this shift remains unclear but may be connected with the configuration of the interplanetary magnetic field during solar maximum. We also find that the dust measurements are in agreement with the interplanetary flux model of Staubach et al. (1997) which was developed to fit a 5-year span of Ulysses data.
92 - H. Kruger , E. Grun , M. Landgraf 1998
The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($i = 79^{circ}$). After its Jupiter flyby in 1992 at a heliocentric distance of 5.4 AU, the spacecraft reapproached the inner solar system, flew over the Suns south polar region in September 1994, crossed the ecliptic plane at a distance of 1.3 AU in March 1995, and flew over the Suns north polar region in July 1995. We report on dust impact data obtained with the dust detector onboard Ulysses between January 1993 and December 1995. We publish and analyse the complete data set of 509 recorded impacts of dust particles with masses between $10^{-16}$ g to $10^{-7}$ g. Together with 968 dust impacts from launch until the end of 1992 published earlier (Grun et al., 1995, {em Planet. Space Sci}, Vol. 43, p. 971-999), information about 1477 particles detected with the Ulysses sensor between October 1990 and December 1995 is now available. The impact rate measured between 1993 and 1995 stayed relatively constant at about 0.4 impacts per day and varied by less than a factor of ten. Most of the impacts recorded outside about 3.5 AU are compatible with particles of interstellar origin. Two populations of interplanetary particles have been recognised: big micrometer-sized particles close to the ecliptic plane and small sub-micrometer-sized particles at high ecliptic latitudes. The observed impact rate is compared with a model for the flux of interstellar dust particles which gives relatively good agreement with the observed impact rate. No change in the instruments noise characteristics or degradation of the channeltron could be revealed during the three-year period.
Three types of observations: the daily values of the solar radio flux at 7 frequencies, the daily international sunspot number and the daily Stanford mean solar magnetic field were processed in order to find all the periodicities hidden in the data. Using a new approach to the radio data, two time series were obtained for each frequency examined, one more sensitive to spot magnetic fields, the other to large magnetic structures not connected with sunspots. Power spectrum analysis of the data was carried out separately for the minimum (540 days from 1 March 1996 to 22 August 1997) and for the rising phase (708 days from 23 August 1997 to 31 July 1999) of the solar cycle 23. The Scargle periodograms obtained, normalized for the effect of autocorrelation, show the majority of known periods and reveal a clear difference between the periodicities found in the minimum and the rising phase. We determined the rotation rate of the `active longitudes in the rising phase as equal to 444.4 $pm$ 4 nHz ($26fd0 pm 0fd3$). The results indicate that appropriate and careful analysis of daily radio data at several frequencies allows the investigation of solar periodicities generated in different layers of the solar atmosphere by various phenomena related to the periodic emergence of diverse magnetic structures.
In the early 1990s, contemporary interstellar dust (ISD) penetrating deep into the heliosphere was identified with the in-situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the ISD stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium surrounding our solar system. Earlier analyses of the Ulysses ISD data measured between 1992 and 1998 implied the existence of big ISD grains [up to 10^-13kg]. The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of ISD in the very local interstellar medium. We analyse the entire data set from 16 yr of Ulysses ISD measurements in interplanetary space. This paper concentrates on the overall mass distribution of ISD. An accompanying paper investigates time-variable phenomena in the Ulysses ISD data, and in a third paper we present the results from dynamical modelling of the ISD flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of v_ISM,inf=23.2km/s, and the ratio of radiation pressure to gravity, beta, calculated for astronomical silicates. We find a gas-to-dust-mass ratio in the local interstellar cloud of R_g/d=193^+85_-57, and a dust density of 2.1+/-0.6x10^-24kg/m^3. For a higher inflow speed of 26km/s, the gas-to-dust-mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local interstellar medium contains big (i.e. 1 um-sized) ISD grains. We find a dust density in the local interstellar medium that is a factor of three lower than values implied by earlier analyses.
The Ulysses spacecraft, launched in October 1990, orbits the Sun on a polar trajectory. The spacecraft is equipped with a highly sensitive impact- ionization dust detector which can in situ measure cosmic dust grains in the mass range 10^-9 to 10^-19 kg. With the Ulysses dust detector dust streams originating from Jupiters volcanically active moon Io have been discovered as well as interstellar dust particles sweeping through the solar system. The distribution of interplanetary dust grains has been measured at high ecliptic latitudes with Ulysses for the first time. The Ulysses measurements of interplanetary dust, dust grains interacting electromagnetically with the magnetosphere of Jupiter and measurements of interstellar dust in the solar system are reviewed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا