No Arabic abstract
BeppoSAX observed NGC4258 on December 1998, when its 2-10 keV luminosity was ~1E41 erg/s. 100% variability is observed in the 3-10 keV band on timescales of a half a day while 20% variability is observed on timescales of one hour. The nuclear component is visible above 2 keV only, being obscured by a column density of (9.5+/-1.2)E22 cm-2; this component is detected up to 70 keV with S/N>=3 and with the steep power law energy index of 1.11+/-0.14. Bremsstrahlung emission for the 2-70 keV X-ray luminosity, as expected in ADAF models with strong winds, is ruled out by the data. The ratio between the nuclear radio and the X-ray luminosities is <=1E-5, similar to that of radio quiet AGN. X-ray variability and spectral shape, radio to X-ray and NIR to X-ray luminosity ratios suggest that the nucleus of NGC4258 could be a scaled-down version of a Seyfert nucleus. The soft (E<=2keV) X-ray emission is complex. There are at least two thermal-like components, with T1=0.6+/-0.1 keV and T2>=1.3 keV. The cooler (L(0.1-2.4keV)=1E40 erg/s) component is probably associated with the jet, resolved in X-rays by the ROSAT HRI. The second component, which can be modeled equally well by an unobscured power law model, has L(0.1-2.4keV)~7E39 erg/s, consistent with that expected from discrete X-ray sources in the host galaxy. NGC4258 and other maser AGNs show strong nuclear X-ray absorption. We propose that this large column of gas might be responsible for shielding the regions of maser emission from X-ray illumination. So a large column density gas may be a necessary property of masing AGNs.
We present new results from BeppoSAX observations of reflection-dominated Seyfert galaxies, and namely: 1) the Compton-thick Seyfert 2s NGC1068 and Circinus Galaxy; 2) the Seyfert 1 NGC4051, whose nucleus was observed on May 1998 to have switched off, leaving only a residual reflection component as an echo of its past activity. Our main focus in this paper is on the soft X-ray continuum properties and on the X-ray line spectroscopy.
Using the BeppoSAX observatory, we have observed a nearby LINER/Seyfert 2 galaxy, NGC 3079, which is known as an outflow galaxy and a bright H_2O-maser source. Using the PDS detector, we have revealed that the NGC 3079 nucleus suffers from a Compton-thick absorption, with a hydrogen column density sim 10^{25} cm^{-2}. After corrected the absorption, the 2--10 keV luminosity becomes 10^{42-43} erg s^{-1} at a distance of 16 Mpc. It is 2-3 orders of magnitude higher than that observed in the MECS band (below 10 kev). We also detected a strong Fe-K line at 6.4^{+0.3}_{-0.2} keV with an equivalent width of 2.4^{+2.9}_{-1.5} keV, which is consistent with the heavy absorption.
We present the X-ray afterglow catalog of BeppoSAX from the launch of the satellite to the end of the mission. Thirty-three X-ray afterglows were securely identified based on their fading behavior out of 39 observations. We have extracted the continuum parameters (decay index, spectral index, flux, absorption) for all available afterglows. We point out a possible correlation between the X-ray afterglow luminosity and the energy emitted during the prompt $gamma$-ray event. We do not detect a significant jet signature within the afterglows, implying a lower limit on the beaming angle, neither a standard energy release when X-ray fluxes are corrected for beaming. Our data support the hypothesis that the burst should be surrounded by an interstellar medium rather than a wind environment, and that this environment should be dense. This may be explained by a termination shock located near the burst progenitor. We finally point out that some dark bursts may be explained by an intrinsic faintness of the event, while others may be strongly absorbed.
We present results from the analysis of a BeppoSAX observation of the Centaurus Cluster. The radial metal abundance profile shows evidence of a large enhancement in the core, where Ab $>$ 1 (sol. units). The temperature map indicates that the cluster is characterized by a gradient oriented in the NW/SE direction, with cooler gas in the NW and hotter gas in the SE (Delta kT sim 1 keV). In hard X-rays, where the PDS detects emission with a flux of $2.2 times 10^{-11}$ erg/cm^2/s in the 20-200 keV band, the spectrum lies above the extrapolation of the cluster thermal emission. We discuss several possible interpretations for the hard excess finding that none is completely satisfactory.
We report on the spectral (pulse averaged) and timing analysis of the ~ 20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~ 2 in intensity, and a factor 10 in Nh. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X--ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~ 10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic component in the Vela X-1 power spectrum presents a knee at about 1 Hz. The pulse period, corrected for binary motion, is 283.206 +/- 0.001 sec.