No Arabic abstract
The first part of this paper deals with the impact of nonsolar and - for late-type, dwarf, and high redshift galaxies - generally subsolar abundances on the interpretation of observational data for starburst galaxies. It points out the differences in colors, luminosities, emission lines, etc. obtained from a model using low metallicity input physics for a starburst on top of the stellar population of a galaxy as compared to an otherwise identical model using solar metallicity input physics only. The second part deals with the chemical evolution during a starburst and contrasts model predictions with observational clues.
We propose an evolutionary scenario by successive bursts of star formation to reproduce the chemical properties of massive nearby Starburst Nucleus Galaxies (SBNGs). The N/O abundance ratios in SBNGs are 0.2 dex higher than in normal HII regions observed in the disks of late-type spirals. The variation of the N/O ratio as a function of metallicity follows a primary + secondary relation, but the increase of nitrogen does not appear as a continuous process. Assuming that nitrogen is produced by intermediate-mass stars, we show that our observations are consistent with a model where the bulk of nitrogen in SBNGs was formed during past sequences of bursts of star formation which probably started 2 or 3 Gyrs in the past.
Recent VLT SINFONI observations of the close environments (~30pc) of nearby AGNs have shown that thick gas tori and starbursts with ages between 10 and 150Myr are frequently found. By applying these observations to a previously established analytical model of clumpy accretion disks, we suggest an evolutionary sequence for starburst and AGN phases. Whereas the observed properties of the gas tell us about the current state of the torus, the starburst characteristics provide information on the history of the torus. In the suggested evolution, a torus passes through 3 different phases predetermined by an external mass accretion rate. Started by an initial, short, and massive gas infall, a turbulent and stellar wind-driven Q~1 disk is formed in which the starburst proceeds. Once the supernovae explode the intercloud medium is removed, leaving a massive, geometrically thick, collisional disk with a decreasing, but still high-mass accretion rate. When the mass accretion rate has significantly decreased, the collisional torus becomes thin and transparent as the circumnuclear disk in the Galactic center of the Milky Way. Variations on this scenario are possible either when there is a second short and massive gas infall, in which case the torus may switch back into the starburst mode, or when there is no initial short massive gas infall. All observed tori up to now have been collisional and thick. The observations show that this phase can last more than 100Myr. During this phase the decrease in the mass accretion rate within the torus is slow (a factor of 4 within 150Myr). The collisional tori also form stars, but with an efficiency of about 10% when compared to a turbulent disk.
We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, $alpha$-elements and Fe) both in the gas and dust phases. %The most recent stellar yield and dust prescriptions are adopted. We test different values of $beta$, the slope of the embedded cluster mass function for the IGIMF, where lower $beta$ values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range $2 lesssim z lesssim 3$. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF ($beta < 2$) or large amounts of dust. In particular, if dust is important, the IGIMF should have $beta ge 2$, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.
We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. The observed radio spectral energy distribution (SED) covers a behaviour range; 1) there are galaxies where the SED is characterized by a synchrotron-type slope, 2) galaxies with a thermal slope, and 3) galaxies with possible free-free absorption at long wavelengths. The latter SED represents a signature of massive star clusters that are still well inside the progenitor molecular cloud. Based on the comparison of the star formation rates (SFR) determined from the recombination lines and those determined from the radio emission we find that SFR(Ha) is on average five times higher than SFR(1.4 GHz). These results suggest that the emission of these galaxies is dominated by a recent and massive star formation event in which the first supernovae (SN) just started to explode. We conclude that the systematic lack of synchrotron emission in those systems with the largest equivalent width of Hb can only be explained if those are young starbursts of less than 3.5Myr of age, i.e. before the first type II SNe emerge.
Blue Compact Dwarf and Dwarf Irregular galaxies are generally believed to be unevolved objects, due to their blue colors, compact appearance and large gas fractions. Many of these objects show an ongoing intense burst of star formation or have experienced it in the recent past. By means of 2-D hydrodynamical simulations, coupled with detailed chemical yields originating from SNeII, SNeIa, and intermediate-mass stars, we study the dynamical and chemical evolution of model galaxies with structural parameters similar to NGC1569, a prototypical starburst galaxy. A burst of star formation with short duration is not able to account for the chemical and morphological properties of this galaxy. The best way to reproduce the chemical composition of this object is by assuming long-lasting episodes of star formation and a more recent burst, separated from the previous episodes by a short quiescent period. The last burst of star formation, in most of the explored cases, does not affect the chemical composition of the galaxy, since the enriched gas produced by young stars is in a too hot phase to be detectable with the optical spectroscopy. Models assuming the infall of a big cloud towards the center of the galaxy reproduce the chemical composition of the NGC1569, but the pressure exercised by the cloud hampers the expansion of the galactic wind, at variance with what observed in NGC1569.