Do you want to publish a course? Click here

Possible evidence for a variable fine structure constant from QSO absorption lines: motivations, analysis and results

68   0   0.0 ( 0 )
 Added by Michael T. Murphy
 Publication date 2000
  fields Physics
and research's language is English
 Authors M. T. Murphy




Ask ChatGPT about the research

An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar absorption line spectra with laboratory spectra provides a sensitive probe for variability of the fine structure constant, alpha, over cosmological time-scales. We have previously developed and applied a new method providing an order of magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-alpha absorption systems. We also re-analyse our previous lower redshift data and confirm our initial results. The constraints on alpha come from simultaneous fitting of absorption lines of subsets of the following species: Mg I, Mg II, Al II, Al III, Si II, Cr II, Fe II, Ni II and Zn II. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range 0.5 < z < 3.5. There is statistical evidence for a smaller alpha at earlier epochs: da/a = (-0.72 +/- 0.18) * 10^{-5}. The new and original samples are independent but separately yield consistent and significant non-zero values of da/a. We summarise the results of a thorough investigation of systematic effects published in a companion paper. The value we quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of da/a from zero.



rate research

Read More

98 - M. T. Murphy 2000
Comparison of quasar absorption line spectra with laboratory spectra provides a precise probe for variability of the fine structure constant, alpha, over cosmological time-scales. We constrain variation in alpha in 21 Keck/HIRES Si IV absorption systems using the alkali doublet (AD) method in which changes in alpha are related to changes in the doublet spacing. The precision obtained with the AD method has been increased by a factor of 3: da/a = (-0.5 +/- 1.3) * 10^{-5}. We also analyse potential systematic errors in this result. Finally, we compare the AD method with the many-multiplet method which has achieved an order of magnitude greater precision and we discuss the future of the AD method.
74 - J. Hu , J. K. Webb , T. R. Ayres 2020
The gravitational potential phi = GM/Rc^2 at the surface of the white dwarf G191-B2B is 10,000 times stronger than that at the Earths surface. Numerous photospheric absorption features are detected, making this a suitable environment to test theories in which the fundamental constants depend on gravity. We have measured the fine structure constant, alpha, at the white dwarf surface, used a newly calibrated Hubble Space Telescope STIS spectrum of G191-B2B, two new independent sets of laboratory Fe V wavelengths, and new atomic calculations of the sensitivity parameters that quantify Fe V wavelength dependency on alpha. The two results obtained are: dalpha/alpha = 6.36 +/- [0.33(stat) + 1.94(sys)] X 10^{-5} and dalpha/alpha = 4.21 +/- [0.47(stat) + 2.35(sys)] X 10^{-5}. The measurements hint that the fine structure constant increases slightly in the presence of strong gravitational fields. A comprehensive search for systematic errors is summarised, including possible effects from line misidentifications, line blending, stratification of the white dwarf atmosphere, the quadratic Zeeman effect and electric field effects, photospheric velocity flows, long-range wavelength distortions in the HST spectrum, and variations in the relative Fe isotopic abundances. None fully account for the observed deviation but the systematic uncertainties are heavily dominated by laboratory wavelength measurement precision.
Various classes of exotic singularity models have been studied as possible mimic models for the observed recent acceleration of the universe. Here we further study one of these classes and, under the assumption that they are phenomenological toy models for the behavior of an underlying scalar field which also couples to the electromagnetic sector of the theory, obtain the corresponding behavior of the fine-structure constant $alpha$ for particular choices of model parameters that have been previously shown to be in reasonable agreement with cosmological observations. We then compare this predicted behavior with available measurements of $alpha$, thus constraining this putative coupling to electromagnetism. We find that values of the coupling which would provide a good fit to spectroscopic measurements of $alpha$ are in more than three-sigma tension with local atomic clock bounds. Future measurements by ESPRESSO and ELT-HIRES will provide a definitive test of these models.
We propose a new probe of the dependence of the fine structure constant, alpha, on a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits on the fractional variation of alpha of (Delta alpha/alpha)=(4.2 +- 1.6)x10^(-5) and (-6.1 +- 5.8)x10^(-5) from Fe V and Ni V spectra, respectively, at a dimensionless gravitational potential relative to Earth of (Delta phi) ~ 5x10^(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to two orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا